

A Better Understanding of Bioassays

Koch

How Suitable are Primary Cell Based Assays for the Evaluation of Product Quality?

Dr. Florian Cymer, Principal Scientist – Analytics Bioassay

20 Juni 2022 | public use

Table of contents

1. Introduction

- 2. In vitro glycoengineering of mAb samples and characterization
- 3. Binding assays and cell-line based functional assessment
- 4. Characterization of primary cells and evaluation functional activities

Roche

Fcγ-receptors are involved in ADCC and ADCP

- CHO manufacturing processes result in more than 30 major glycosylation patterns and the glycan on each of the heavy chain can differ, further increasing the heterogeneiety.
- Glycans modulate the interaction with Fc-receptors on immune cells and also affect the conformational space of IgG-type antibodies.
- IgG-glycans can modulate antibody effector functions and therefore have to be controlled using functional assays to assure a safe and efficatious product.

Assay matrix

Relation to in vivo situation Complexity of assay Elucidation of biolog. relevance

S Cymer, F., Beck, H., Rohde, A. & Reusch, D. Therapeutic monoclonal antibody N-glycosylation - Structure, function and therapeutic potential. *Biologicals* 52, 1-11, doi:10.1016/j.biologicals.2017.11.001 (2018).

In vitro glycoengineering of mAb samples and characterization

Koci

5 Thomann, M. *et al.* Effects of sialic acid linkage on antibody-fragment crystallizable receptor binding and antibody dependent cytotoxicity depend on levels of fucosylation/bisecting. *Bioanalysis* **11**, 1437-1449, doi:10.4155/bio-2019-0124 (2019).

In vitro glycoengineering of high and low afucosylated lgG1

After in vitro glycoengineering, all samples were tested by SEC (to exclude aggregation or fragmentation) and LC-MS peptide mapping, to determine the level of each glycan and to check for absence of potential other modifications of each sample (side-chain oxidation, deamidation, succinimide formation, isomerization).

Koche

Binding experiments using SPR

- Changes were generally more pronounced for low_afuc antibody
- Minor changes due to galactosylation but dramatic differences due to changes in sialydation. Generally a reduction in binding for α -2,3 sialydated material and increase in binding for α -2,6 sialydated material

ST3

ST3

ST6

ST6

Activity of glycoengineered material in reporter gene ADCC assays and structural changes by HDMX

- Changes were generally more pronounced for low_afuc antibody
- Minor changes due to galactosylation but more pronounced differences due to changes in sialydation. A
 reduction in binding for α-2,3 sialydated material and increase in binding for α-2,6 sialydated material was
 observed
- Structural changes most pronounced for the α -2,3 sialydated material

S Kuhne, F. et al. The Impact of Immunoglobulin G1 Fc Sialylation on Backbone Amide H/D Exchange. Antibodies (Basel) 8, doi:10.3390/antib8040049 (2019).

Characterization of primary cells and evaluation functional activities

KOCI

S Wieckowski, S., Avenal, C., Orjalo, A. V., Jr., Gygax, D. & Cymer, F. Toward a Better Understanding of Bioassays for the Development of Biopharmaceuticals by Exploring the Structure-Antibody-Dependent Cellular Cytotoxicity Relationship in Human Primary Cells. *Front Immunol* 11, 552596, doi:10.3389/fimmu.2020.552596 (2020).

FACS marker panel

Characterization of primary cells from buffy coats

immunophenotyping of the major lymphocyte and myeloid subsets				
antigen	fluorochrome	clone		
CD11c	PE-Cy5	B-ly6		
CD14	BUV395	ΜφΡ9		
CD38	BV421	HIT2		
CD4	BV510	SK3		
HLA-DR	BV605	G46-6		
CD8	BV650	RPA-T8		
CD25	BV711	2A3		
CD16	BV786	3G8		
CD3	AF488	UCHT1		
CD45RA	PerCP-Cy5.5	HI100		
CD127	PE	HIL-7R-M21		
CD197	PE-CF594	150503		
CD20	PE-Cy7	2H7		
CD123	APC	7G3		
TCRγ/δ-1	APC-R700	11F2		
CD56	BUV373	NCAM16.2		

FcR and Fc receptor-like (FcRL) receptors			
antigen	fluorochro me	clone	
CD56	APC	REA196	
lin3	FITC	М ф Р9,SK7,	
CD45	PerCP	2D1	
FcRL6	BV421	2H3	
CD307c	BV786	H5	
FCRN	AF700	937508	
CD64	BUV737	10.1	
CD32	BV650	FLI8.26	
CD16b	PE	REA589	
CD16	BV510	3G8	

markers of cytotoxicity				
antigen	fluorochrome	clone		
CD159a (NKG2A)	PE	REA110		
KIR-NKAT2 (KIR2DL2/S2/L3)	BUV395	DX27		
CD314 (NKG2D)	BV421	1D11		
CD57	BV605	QA17A04		
CD335 (NKp46)	BV650	9E2/NKp46		
CD336 (NKp44)	BV711	p44-8		
CD337 (NKp30)	BV786	p30-15		
CD158 (KIR2DL1/S1/S3/S5)	PerCP-Cy5.5	HP-MA4		
CD159c (NKG2C)	PE-Vio770	REA205		
CD158e (KIR3DL1)	APC	DX9		
lin3	FITC	МфР9,SK7,SJ25C1,L2 7		
CD16	BV510	3G8		
CD56	BUV373	NCAM16.2		

Characterization of primary cells

- § Using buffy coats from 30 healthy donors, the content of PBMCs and NK-subtypes where characterized, with high donor to donor variability. Donors were characterized wrt FcGR3a haplotype.
- S NK cells demonstrated a high diversity in expression of relevant markers.

- S The distribution of immune cells was diverse and differed from donor to donor
- S Among three main subsets of NK cells there was great variability in these subtypes from donor to donor
- S Cytotoxic markers on NK cells appear to be unique to each donor analyzed

Isolated primary NK cell (CD56⁺) mediated ADCC using BT474 target cell-line and in vitro glycoengineered material

- S High variations in maximum ADCC (higher asymptote) independent of FcGR3A haplotype
- **§** No correlation of surfac marker expression and ADCC parameters
- S Deglycosylated variant, ST6 (max. ADCC), ST3 (EC₅₀) as well as GO (EC₅₀) glycoform demonstrated significant differences in ADCC

Summary

- Changes in binding and activities in cell-line based assays due to differences in glycostructures are comparable
- Differences in glycostructures could not be fully resolved in primary cell-based assays due to high variability between donors and due to an avidity plateau that marks maximum target cell lysis.

Summary

• The used primary cell-based assay does not appear to be suitable to sufficiently resolve changes in critical quality attributes such as glycosylation extremes in the used ADCC assay.

Doing now what patients need next