Potency Assays for Engineered Cell Therapies Challenges and Opportunities Emily Lowe, PhD

Director Analytical Development, Process Development

Biological Drug Development Timeline

Source: Tufts Center for the Study of Drug Development (CSDD) Briefing: "Cost of Developing a New Drug," Nov. 2014. Tufts CSDD & School of Medicine., and US FDA Infographic, "Drug Approval Process, "https://www.fda.gov/downloads/Drugs/ResourcesForYou/Consumers/UCM284393.pdf

Life Cycle Approach to Cell Therapy Product Design

IND: Investigational New Drug; BLA: Biologics License Application; TPP: Target Product Profile; QTPP: Quality Target Product Profile; CQA: Critical Quality Attribute; pCQA: potential Critical Quality Attribute; FMEA: Failure Mode Effects Analysis; LCM: Life Cycle Management; ATP: Analytical Target Profile

The QbD Challenge with Engineered Cell Therapies

- The ATP/CQA Dilemma: The product's CQA should drive the design, development and validation of appropriate analytical methods but CQAs are defined fairly late in the process!
- Due to product complexity, CQA's are often not known in early development & CMC quality control can be challenging (high batch-tobatch variability)
- Thorough Product and Process characterization are key to understand, identify, and develop appropriate quality control strategy for various phases of clinical development through commercial
- Defining CQA's by correlational analysis requires a broad range of cell characterization and potency assays

The Critical Role of Potency Assays For Product Understanding and Final Product Release

- For each specific product, Potency methods need to:
 - reflect the **mechanism of action (MoA)** or relevant biological property/ activity of the product
 - preferably be a biological assay (i.e. cell-based)
 - o non-biological: immunochemical, biochemical, and/ or molecular attributes
 - demonstrate stability indicating properties for the product
 - be fit for purpose, robust and easy to use for QC release testing
- Cell-based potency methods are used for
 - final product release and stability
 - enhancing product knowledge and understanding for products with a more complex MoA
 - qualification of critical reagents, internal positive controls and reference standards
 - support of changes in the Manufacturing Process

Inherent Challenges of Cell Therapy Potency Assays

- Cell-based potency assays are essential for engineered cell therapy products to demonstrate final product activity is linked to biological CQAs
- Autologous cell therapies lack universal controls and produce relatively small sized lots
- Allogeneic cell therapies rely on healthy human donors = lot-to-lot variability
- Desire for fast release potency assays so product can get to seriously ill patients
- Identifying and controlling variability is one of the biggest challenges in designing and executing cell-based potency assays

Poorly controlled and highly variable assays:

- Increase invalid and re-test rates (compliance risks)
- Manufacturing process may appear out of control
- Final product may appear unstable

A QbD Approach to Analytical Method Development **Provides Early Opportunities**

GILEAD Com

QbD: Quality by Design; CQA: Critical Quality Attribute; ATP: Analytical Target Profile; ATP: Analytical Target Profile; LOB: Limit of Blank; LOQ: Limit of Quantitation

Analytical Methods can be Divided into Unit Operations

Analytical Methods can be Divided into Unit Operations

QbD Approach to Cytotoxicity Method Dev The Design Space: Maximize Robustness, Minimize Variability

Assay Type	 Chromium release: canonical, uses radiation MTT, LDH: colorimetric assays, simple equipment, low hands on time, not specific to target cell Luciferase: sensitive and low hands on time, requires genetic modification Flow cytometry: no genetic modification, increased hands on time, specialized equipment 	
	Assay Conditions	 Platformable, automation friendly Reagents – accessibility, stability, robustness Timeframe – based on QC user requirements: <6 hr, same day/overnighter

Plate layout – simple order of operations, consistent, "pipettable" volumes

Target Cells

- Susceptibility to being killed (caspas-3/7 induction)
- Consistency (ranked order) with orthogonal methods a plus

•

Identify healthiest starting conditions •

- ~100% of target cells can be killed at "max dose"
- ~0% of target cells are killed at "min dose"

Small perturbations do not result in large differences 10

It's Never too Early to Think about Method Life Cycle

Development of Cell Therapy Products Requires A Robust Toolbox of Potency Methods

Your clinical potency methods will likely be more complex than your commercial method – to support equivalence, plan your studies early

Conclusions

- Engineered cell therapies are still very new modalities, have complex modes of action, and large inherent sources of variabilities
- Using a QbD approach to Process and Method development ensures the focus is on Product Quality from the beginning
- A well planned eATP will help to identify the right controls ensuring confidence in data through early and late phase
- Thorough Analytical characterization is key to understand, identify, and develop an appropriate quality control strategy for various phases of clinical development through commercial
- The Analytical toolbox of characterization and release potency assays are key to the product and process control
- The entire scope of the method lifecycle and method impacts needs to be continually considered
- Analytical method performance monitoring through control trending and invalid rate assessment should be implemented as early as Phase 1
- Communications with Regulatory Agencies and obtaining scientific advice in advance of IND or BLA submissions is key

Acknowledgements

- The patients, family, friends, and caregivers
- The Process Development Department under the leadership of Sugu Patro
- The Analytical Development Group under the leadership of Max Tejada

Questions?

