

Development and qualification of a potency assay to support gene therapy

Hannah Maheno, CASSS Bioassay 2020

Outline

 Potency assays for gene therapy 	3
 Development Objectives 	7
Cell line engineering	10
 Developing the reporter gene potency assay 	13
Method Crossover strategy	24
Final Conclusion	26

Sanofi Method vs. Industry Requirements

1) Demonstrates MoA

- Mirrors infectivity, gene expression, and generation of functional protein
- Preferably a single assay
- Reflects pre-clinical & clinical response

/ 2) Relevant cell line

- Needs to be relevant to the biological activity of the product (or bridged)
- Permissive

/ 3) Quantitative Read-out

Simple

•

- Platformable (across multiple serotypes)
- Robust
- Automatable
- Sensitive and quantitative analysis

Industry Average: Complex, semi-quantitative assay lacking robustness & precision

Development of a cell-based potency assay for an early phase gene therapy product

 Transition gene therapy potency method during GMP sample release and stability

• Evolve assay platform from a ELISA endpoint to a reporter gene endpoint via luciferase detection

1) Deliver a robust potency assay to support GMP release and stability

2) Cross-over data between the different platforms to bridge the on-going stability study

Both platforms target the same second messenger molecule response as a measure of potency

• Cell line A engineered by Svar Life Science

- Stably transfected with activation protein (Sanofi plasmid with Gene Y)
- Luciferase reporter system (proprietary) responsive to second messenger molecule

Characterization and manufacture

- Clone stability, cell viability, and second messenger response was evaluated during manufacture
- Assay Ready Cells delivered

- intracellular reporter system

No expression of firefly luciferase activity

+ intracellular reporter system

binds to transactivator, forming a homodimer that activates transcription of promoter Expression of luciferase activity is <u>directly proportional</u> to the intracellular level of second messenger

A) AAV produced the highest luciferase signal T=72 hours post-infection.

B) Ad5 or proteasome inhibitors are not required to generate transduction-induced luciferase activity.

Reporter gene potency assay workflow

Pre-Assay Culture Conditions

Objective:

• Investigate the impact that flask confluency at time of seeding

Procedure:

- Examine multiple flask densities targeting 60, 70, 80, 100% confluency
- Perform assay from each flask on a single assay plate using same seeding density and optimal drug exposure previously defined

Seeding Density	Cells/Flask	Targeted Confluency at Seed	Confluency (%)	Viable Cell Concentration (E5/mL)	Viability (%)	
5E3 cells/well	5.70E+05	60%	65	2.5	93.5	
	7.10E+05	70%	75	3.2	95.2	
	8.50E+05	80%	80	4.0	95.2	
	1.00E+06	100%	95	4.7	95.9	

Flask Confluency Results

- A. An initial dose response curve was observed
- B. Signal-to-Noise ratio was 600-fold for all conditions
- C. Robustness with respect to flask confluency from 70-100%.

7	Flask Confluency	R ²	EC50	S/N
	60	0.998	9.26E5	614
	70	1.00	7.89E5	630
	80	1.00	7.00E5	623
	100	0.999	7.47E5	632

60%

□70%

■ 80%

Cell Seeding Density/Incubation Time DOE

Objective:

- Determine the optimal infection incubation time
- Determine the optimal seeding density

Procedure:

- Seeding Density: 5E3, 1.25E4, 2.5E4, 1E5 cells/well
- Infection Incubation Time: 2, 3, 4 days
- Evaluate across a wide MOI series

		1	2	3	4	5	6	7	8	9	10	11	12
CD1	А	2.00E+07	1.00E+07	5.00E+06	2.50E+06	1.25E+06	6.25E+05	3.13E+05	1.56E+05	3.13E+04	6.25E+03	1.25E+03	0
201	В	2.00E+07	1.00E+07	5.00E+06	2.50E+06	1.25E+06	6.25E+05	3.13E+05	1.56E+05	3.13E+04	6.25E+03	1.25E+03	0
600	С	2.00E+07	1.00E+07	5.00E+06	2.50E+06	1.25E+06	6.25E+05	3.13E+05	1.56E+05	3.13E+04	6.25E+03	1.25E+03	0
SDZ	D	2.00E+07	1.00E+07	5.00E+06	2.50E+06	1.25E+06	6.25E+05	3.13E+05	1.56E+05	3.13E+04	6.25E+03	1.25E+03	0
602	Е	2.00E+07	1.00E+07	5.00E+06	2.50E+06	1.25E+06	6.25E+05	3.13E+05	1.56E+05	3.13E+04	6.25E+03	1.25E+03	0
203	F	2.00E+07	1.00E+07	5.00E+06	2.50E+06	1.25E+06	6.25E+05	3.13E+05	1.56E+05	3.13E+04	6.25E+03	1.25E+03	0
SD4	G	2.00E+07	1.00E+07	5.00E+06	2.50E+06	1.25E+06	6.25E+05	3.13E+05	1.56E+05	3.13E+04	6.25E+03	1.25E+03	0
	Н	2.00E+07	1.00E+07	5.00E+06	2.50E+06	1.25E+06	6.25E+05	3.13E+05	1.56E+05	3.13E+04	6.25E+03	1.25E+03	0

Optimal Infection Day/Seeding Density

Reporter cell line seeded at 5E3 cells/well, and infected for 3 days with AAV

Parallel Line Analysis

Molecular Devices Relative Potency and Parallel Line analysis in Softmax Pro

- Compare dose-response curves to reference in order to assess differences
- Shift relative to reference indicates change in potency that can be measured

SANOFI 🎝

Qualification: Reporter gene relative potency assay

SANOFI 🎝

Comparing Workflows: ELISA vs. Reporter Gene endpoints

Assay Step	Current Method	Reporter Method		
Plate format	24-well	96-well		
Cell line	Parental	Reporter gene		
Plasmid transfection	transient	Stable		
Infection MOI	5 points in quadruplicate	6 points in triplicate		
Ad5 required?	Yes	No		
Sample Throughput	2 plates /1 sample	2 plates / 4 samples		
Infection time	3 days	3 days		
Harvest/Lysis	1 day	Not required		
Detection	ELISA	Luciferase		
Data Analysis	PLA	PLA		
Total Assay Time	6 days	4 days		
Controls	WRSELISA standardnegative control	WRSnegative controlPositive Control		

 Generating similar results for platform comparability was not attainable because ELISA method was not robust

- Instead, selective historical data was used as a comparison
 - Lot 5 obtained lower potency compared to reference using the ELISA platform.
 - Can reporter gene method detect differences observed in potency?

Cross over Results

- Reporter gene assay was implemented to test DS and DP samples on release/stability
 - Replaced variable ELISA method
 - Increased method accuracy, range, throughput, and sensitivity

 Reporter gene assay not intended for early phase release testing but transitioned early due to program need

- Potency is only method relevant to product efficacy in gene therapy and therefore has significant value
 - Structure/Function studies
 - Process characterization
 - Batch-to-batch consistency
 - Comparability studies
 - interrogates the product

THANK YOU

- Michelle Joubert
- Aisleen McColl-Carboni
- Hsin-Wei Liao
- Mandy Hulbert
- Stephanie Post
- Francis Poulin

Svar Life Science

- Dr. Michael Tovey
- Christophe Lallemand
- Lue Huang

