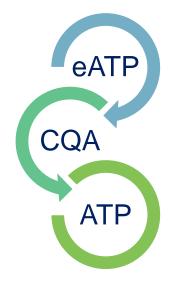
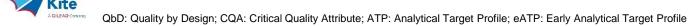


Emily Lowe, PhD

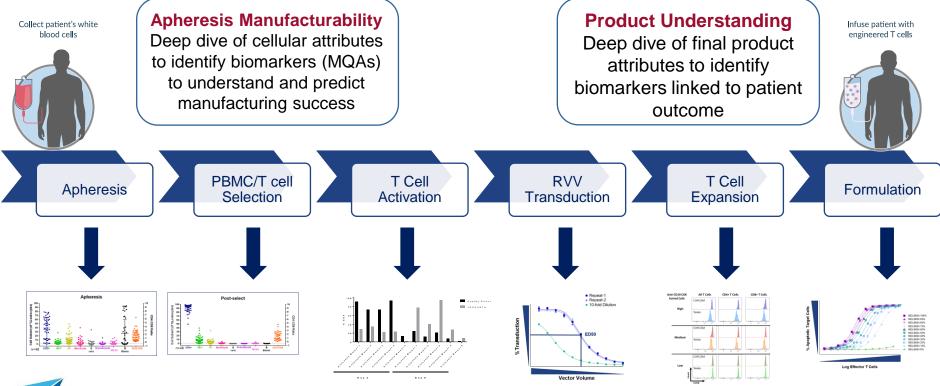
Director Analytical Development, Process Development

Life Cycle Approach to Cell Therapy Product Design

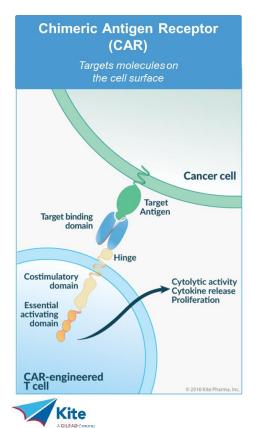




TPP: Target Product Profile; QTPP: Quality Target Product Profile; CQA: Critical Quality Attribute; pCQA: potential Critical Quality Attribute; FMEA: Failure Mode Effects Analysis; LCM: Life Cycle Management; ATP: Analytical Target Profile


The Challenges of QbD in Engineered T Cell Therapies

- The ATP/CQA Dilemma: The product's CQA should drive the design, development and validation of appropriate analytical methods but CQAs are defined fairly late in the process!
- Due to product complexity, CQA's are often not known in early development & CMC quality control can be challenging (high batch-tobatch variability)
- Thorough Analytical characterization is key to understand, identify, and develop appropriate quality control strategy for various phases of clinical development through commercial
- Defining CQA's by correlational analysis requires a broad range of cell characterization and potency assays



Analytical Toolbox For Engineered T Cell Products Enables Product Quality

Engineered Protein Receptors' Mechanisms of Action

- Cell-based potency assays are essential for engineered cell therapy products to demonstrate final product activity is linked to biological critical quality attributes
 - CAR/TCR surface expression is critical for potency
- Identifying and controlling variability is one of the biggest challenges in designing and executing cell-based potency assays
- Poorly controlled and highly variable assays:
 - Increase invalid and re-test rates (compliance risks)
 - May cause a manufacturing process to appear out of control
 - May result in final product to appear unstable

A QbD Approach to Flow Cytometry Analytical Method Development

 What precision is required to understand whether Process changes impact CQAs

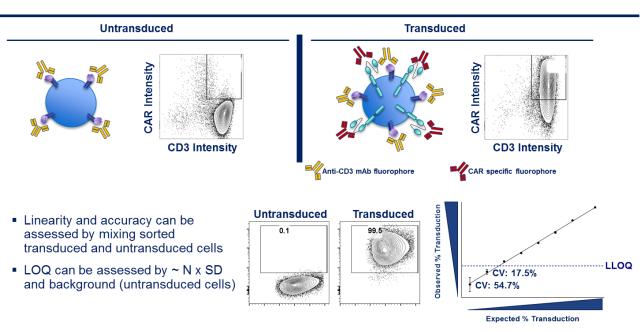
Design Space

- Marker selection
- Fluorochrome selection
- Compensation matrix
- Viability Dye
- Antibody titration
- Wash and stain buffers
- Gating strategy
- Equipment

Assay Development

- Identify system suitability controls
- Sample handling
- Sample stability
- Reagent stability
- Robustness of assay parameters (cell concentration, reagent volumes)

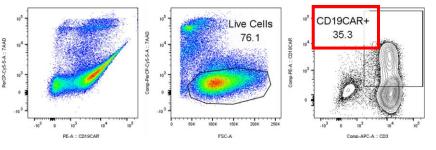
Assay Performance

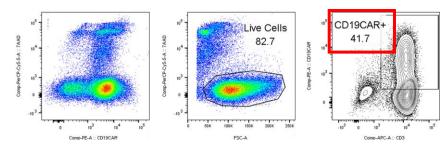

- Specificity
- Sensitivity (LOB/machine noise)
- Precision: Intra assay/inter assay repeatability
- Linearity
- LLOQ

Flow Cytometry Quantitates % T Cells Expressing The CAR: % CAR T Cells x Total Number Of Viable Cells Enables Dosing

Flow Cytometry methods can be validated for commercial lot release

- Specificity
- Linearity
- Range: LOQ 100%
- Accuracy by dilutional linearity
- Precision
- Robust (identify critical method parameters)
- Assay validity control: establish 100% sorted, single cell expanded cell banks then make various blends

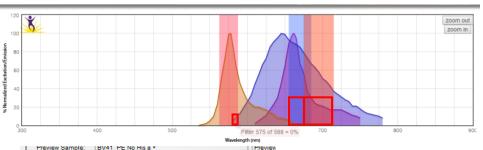

Considerations for Flow Cytometry Based Methods Choose antibody-fluorophore combinations to reduce spectral overlap



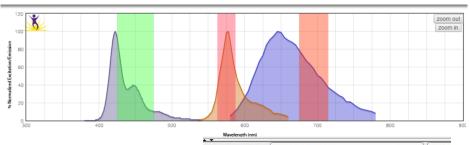
Research Method

 Poorly compensated data by inexperienced operators will increase day-to-day variability, increase invalid rates and potentially increase OOS

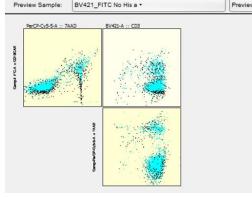
Poor Compensation



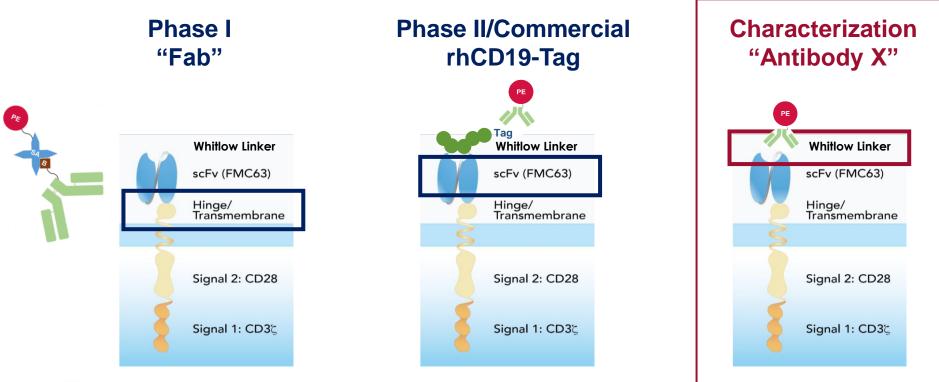
Corrected Compensation

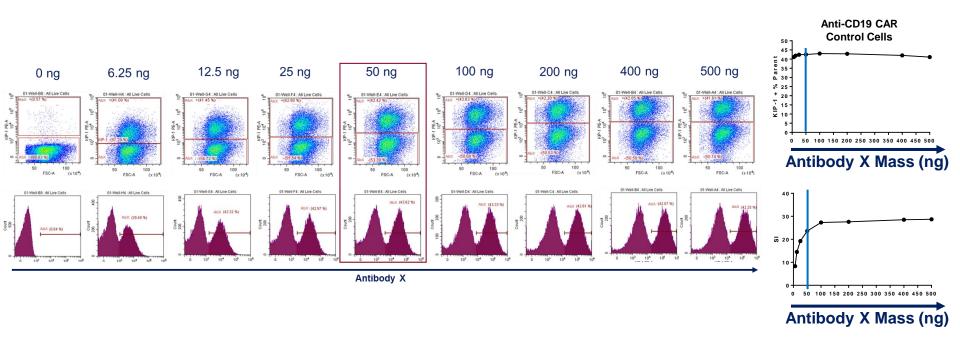


Considerations for Flow Cytometry Based Methods Choose antibody-fluorophore combinations to reduce spectral overlap

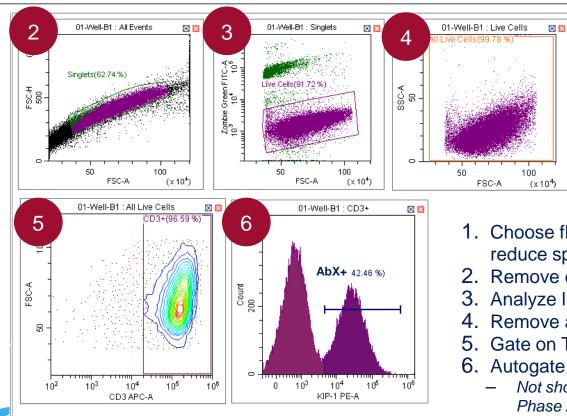

Research Method

Analytical Optimized Method


- Keep release methods simple (≤ 5 colors)
- Take advantage of each laser to reduce spectral overlap and eliminate the need for compensation

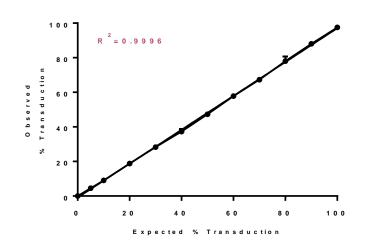

PerCP-Cy5-5-A :: 7AAE

Orthogonal Percent Transduction Analytical Methods Each Detects a Different Part of the CAR


Antibody X Titration Reveals First Surprise Negative population shifts with positive population

FMO / Isotype gating is not appropriate for this kind of antibody

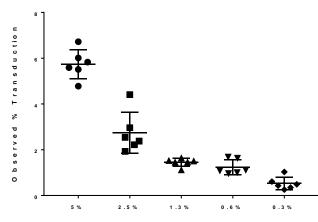
New Chzn Method Gating Strategy Includes **Autogating Feature for Reduced Subjectivity**


Νпе

A GILEAD Com

Use	Show Au	itofluoresce	ence	
Autofl.	Channel	-FITC%	-APC%	-PE%
5.27	FITC		0.00	0.49
0.05	APC	0.00		0.00
0.00	PE	0.04	0.00	

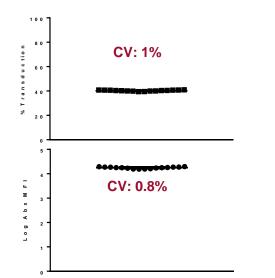
- 1. Choose fluorochrome-laser configuration to reduce spectral overlap
- 2. Remove doublets
- 3. Analyze live cells
- 4. Remove autofluorescence
- 5. Gate on T cells (be careful!)
- 6. Autogate algorithm identifies bimodal distribution
 - Not showing extensive algorithm development in Phase 2 of method development


The New Chzn Method is Linear: 4 Independent Assays by 3 Analysts and 2 Flow Cytometers

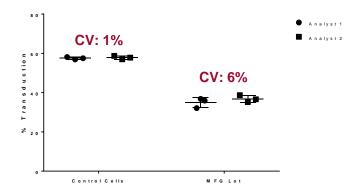
SUMMARY OF LINEARITY									
			Observed Percent Transduction					l l	
	100% CD19	Untransduced cells/well	Assay 1	Assay 2	Assay 3	Assay 4		AVG	AVG
	cells/well		Analyst 1	Analyst 2	Analyst 3	Analyst 2	AVG	Recovery	CV
			EQT 1	EQT 1	EQT 2	EQT 2			
100%	1.0 x 10 ⁶	0	97%	97%	98%	98%	97%	97%	5.65%
90%	0.9 x 10 ⁶	0.1x 10 ⁶	87%	87%	88%	90%	88%	98%	0.42%
80%	0.8 x 10 ⁶	0.2x 10 ⁶	76%	76%	78%	82%	78%	97%	1.33%
70%	0.7 x 10 ⁶	0.3 x 10 ⁶	67%	66%	69%	67%	67%	96%	2.18%
60%	0.6 x 10 ⁶	0.4 x 10 ⁶	57%	57%	59%	58%	58%	96%	2.04%
50%	0.5 x 10 ⁶	0.5 x 10 ⁶	47%	46%	48%	48%	47%	95%	2.47%
40%	0.4 x 10 ⁶	0.6 x 10 ⁶	36%	36%	39%	38%	37%	93%	4.20%
30%	0.3 x 10 ⁶	0.7 x 10 ⁶	28%	28%	29%	28%	28%	94%	2.29%
20%	0.2x 10 ⁶	0.8 x 10 ⁶	18%	19%	20%	18%	19%	94%	5.32%
10%	0.1x 10 ⁶	0.9 x 10 ⁶	9%	9%	9%	9%	9%	91%	2.11%
5%	0.05 x 10 ⁶	0.95 x 10 ⁶	5%	4%	5%	4%	4%	88%	11.46%
0%	0	1.0 x 10 ⁶	0	0	0	0	0%	NA	NA

The New Chzn Method LLOQ is 5%: The Limitation Stems from the Autogate Algorithm*

Expected % Transduction

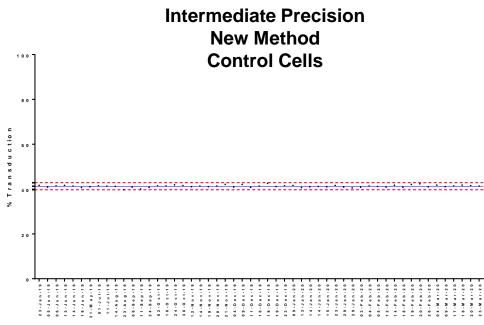

Expected %Td N=6 Replicates	Number 100% cells/well	Number Utd cells/well	Observed %Td	%Recovery	%CV
5%	0.25 x 10 ⁵	4.75 x 10 ⁵	5.7%	114%	18%
2.5%	0.125 x 10 ⁵	4.88 x 10 ⁵	2.7%	110%	32%
1.25%	0.0625 x 10 ⁵	4.94 x 10 ⁵	1.5%	116%	12%
0.63%	0.0315 x 10 ⁵	4.97 x 10 ⁵	1.2%	197%	26%
0.31%	0.0155 x 10 ⁵	4.98 x 10 ⁵	0.5%	171%	52%

* Phase 1 algorithm



The New Chzn Method is Highly Repeatable Intra-plate precision $\leq 1\%$, Inter-plate precision $\leq 6\%$

- Repeatability: intra-plate
- One control sample was plated into 16 wells of one plate, stained and acquired

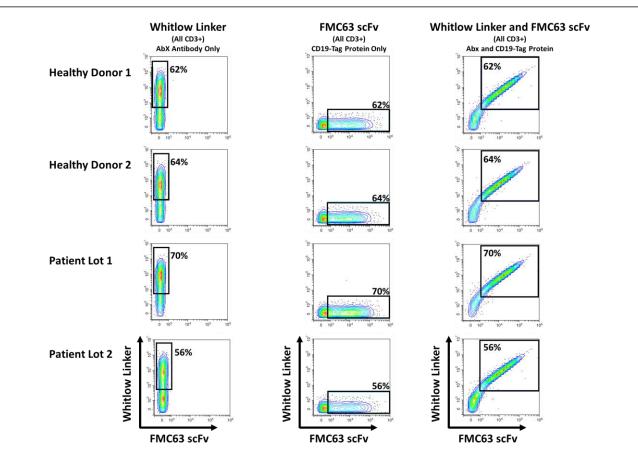


- Repeatability: inter-sample, interplate
 - Two analysts assayed three independent vials of control cells and three independent vials of one MFG lot one on day

Intermediate Precision of the New Chzn Method >1 year in Analytical Services: ~ 1% CV, 0 Invalids

C	а	te	ο	f	R	u	n	

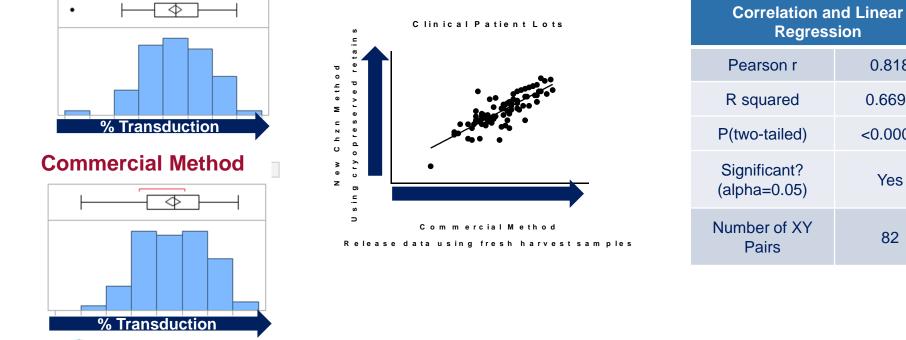
Control Cells (Range: 39.7% – 42.8%)		
Number of values	53	
Minimum	40%	
Maximum	43%	
Mean	41%	
Std. Deviation	0.5%	
%CV	1.3%	


Time Spent Assessing and Controlling Sources of Variability Pay Off in Robust Assay Performance

- Sample handling pre-stain for increased antigen stability
- Cell seeding density
- Antibody mass
- Mass, staining volume, incubation time, temperature
- Antibody X stability
- Viability dye
- Dilution, staining volume, incubation time, temperature
- Number of wash steps
- Staining buffer
- Post-staining hold time, temperature

Method Parameter	Acceptance Criteria
LOQ	5%
Dilutional Linearity	R ² > 0.9
Accuracy (% Recovery)	80%-120%
Repeatability	<10% CV
Intermediate Precision	<10% CV

All performance parameters met commercial method's validation criteria

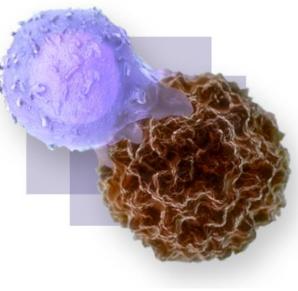

Are the Two Method Orthogonal? Yes, Antibody X Co-stains with rhCD19

Experiments in Analytical Development Show Promise for Equivalence

New Chzn Method

Pearson r	0.818
R squared	0.6691
P(two-tailed)	<0.0001
Significant? (alpha=0.05)	Yes
Number of XY Pairs	82

Considerations for Flow Cytometry Based Methods


- Platform, platform, platform!
 - Assay Conditions
- Gating strategy and gating controls
- Assay validity and method monitoring controls
- Acquisition EQT: digital with 21 CFR part 11 compliant software
- Automation friendly (assay and analysis)
- Your clinical method will likely be more complex than your commercial method – to support equivalence, plan your studies early
- Increase speed from pipeline to IND
- Improved method understanding, qualification/validation strategies

	High Throughput Flow Cytometry
	 Automated acquisition and analysis
	• 21 CFR Part 11 Compliant
	Small footprint
	Robust and Repeatable
early	Easy to execute in QC
es	

Conclusions

- Engineered cell therapies are still very new modalities, have complex modes of action and large inherent sources of variabilities
- Using a QbD approach to Process and Method development ensures the focus is on Product Quality from the beginning
- Flow cytometry is a relatively new analytical tool that can be used to determine transgene expression for lot release
 - A well planned eATP will help to identify the right controls ensuring confidence in data through early and late phase
 - Late phase method/ATP changes can impact specifications set during pivotal and require extensive bridging/comparability studies
 - Platform early and keep methods simple for lot release

Acknowledgements

- · The patients, family, friends, and caregivers
- The Process Development Department under the leadership of Vijay Chiruvolu
- The Analytical Development Group under the leadership of Max Tejada
- Aparna Subramanian, Iska Morales and Nick Rice (Bioassay)
- Stuart Sievers and Arianne Perez (Cell Biology, Research)

Questions?

