Curve Similarity Index for testing Parallelism in Bioassay

obi

Paul Faya

erspective

CASSS Bioassays 2020

Lilly

time

invest

Agenda

- Background
- Parallelism
- Traditional Approaches
- Curve Similarity Index
- Acceptance Limit
- Simulation Study

Background

- United States Pharmacopeia (USP)<1032>
 - "Because of the inherent variability in biological test systems, an absolute measure of potency is more variable than a measure of activity relative to a Standard"
 - "Assuming that the **Standard** and **Test** materials are biologically similar, statistical similarity should be present, and the Test sample can be expected to behave like a concentration or dilution of the Standard."

Parallelism

- Parallelism a.k.a. "equivalence" or "similarity"
- Is the TS a dilution or concentration of the RS?
 - i.e.: the only difference between the two curves is the EC50

$$y = D_i + \frac{A_i - D_i}{1 + \left(\frac{x}{C_i}\right)^{B_i}}, \qquad i = 1,2$$

Difference Test (F-Test)

•
$$H_0: A_1 = A_2$$
 and $B_1 = B_2$ and $D_1 = D_2$

•
$$H_1: A_1 \neq A_2 \text{ or } B_1 \neq B_2 \text{ or } D_1 \neq D_2$$

$$F = \frac{signal}{noise}$$

CASSS Bioassays 2020

F-Test

- Often rejects H_0 when the curves appear to be parallel in the presence of good assay precision
- Often fails to reject H_0 in the case of non-parallelism due to poor assay data precision

- Equivalence Test
 - Equivalence margins, D_L , D_U

$$H_{0}: \frac{A_{1}}{A_{2}} \leq D_{L} \text{ or } \frac{A_{1}}{A_{2}} \geq D_{U} \qquad H_{1}: D_{L} < \frac{A_{1}}{A_{2}} < D_{U}$$

$$or \ \frac{B_{1}}{B_{2}} \leq D_{L} \text{ or } \frac{B_{1}}{B_{2}} \geq D_{U} \qquad and \ D_{L} < \frac{B_{1}}{B_{2}} < D_{U}$$

$$or \ \frac{D_{1}}{D_{2}} \leq D_{L} \text{ or } \frac{D_{1}}{D_{2}} \geq D_{U} \qquad and \ D_{L} < \frac{D_{1}}{D_{2}} < D_{U}$$

- Equivalence Test Challenges
 - Slope challenge, *B* is not the slope (Stegmann, 2017)
 - Parameters are correlated
 - Establishing equivalence margins is challenging
 - It's a multivariate problem
 - False-positive rate is difficult

Guidelines

- United States Pharmacopeia (USP)<1032>
 - Section 4.7: "The determination of similarity could be based on the individual parameters... Alternatively, evaluation of similarity can be based on a single composite measure of nonparallelism..."
- European Pharmacopoeia (Chapter 5.3)
 - Section 1: "Alternative methods can be used and may be accepted by the competent authorities, provided that they are supported by relevant data and justified during the assay validation process"

Curve Similarity Index (CSI)

- Can we reduce the test to a single measure that is intuitive?
- Consider area between curves as an indicator of curve similarity

Step 1: Obtain independent fits

Step 2: Align curves at EC50

Curve	Α	В	С	D
Ref	10	1	32	1.5
Unk	11	2	32	1

Step 3: Compute CSI Metric

Step 3: Compute CSI Metric

• Parallel maximum – parallel minimum

Step 3: Compute CSI Metric

- Make use of trapezoidal rule to compute area under the curve
- κ = Area Under Curve = sum of area of trapezoids
- $\eta = (\max \text{ conc} \min \text{ conc}) \times (\max \text{ asymptote} \min \text{ asymptote})$

Eli Lilly and Company

Step 4: Compare CSI Result to Limit

- Could take hypothesis test approach (Faya et al., 2020)
 - $H_0: CSI < \delta$ vs. $H_1: CSI \ge \delta$
 - p-value decision based on t-test
 - Computation of standard error for t-test is complex
- Probabilistic approach
 - Compare point estimate of CSI to limit δ
 - CSI can be computed using built-in functions in SoftMax Pro, for example
 - The limit δ is chosen based on simulation studies, historical data, and SME input

CSI Acceptance Limit

- What is considered practically parallel? •
- Look at unconstrained fits vs. CSI with SME •
- For example, SME decides $CSI \ge 0.95$ ۲

CSI Acceptance Limit

 But a method's ability to meet a CSI ≥ 0.95 limit depends on its precision (%CV)

System vs. Sample Suitability

- 1. System Suitability
 - Validity of the assay:
 - Standard and control parameters in their usual range
 - Standard and control data are in their usual range (residual variation)
 - Adequacy of model fit
 - Precision
- 2. Sample Suitability
 - Validity of the potency estimate for a TS:
 - Adequacy of model fit for TS
 - Similarity to the Standard
 - Potency within range of the assay system

Sample Suitability

- 1. Adequacy of model fit for TS
 - Could consider:
 - Lack-of-fit sum of squares (USP<1032>)
 - Relative Lack-of-Fit (Li et al., 2017)
 - %CV at each concentration

If I am satisfied with the TS model fit and the dose-response curve, then...

- 2. Similarity to the Standard
 - $CSI \ge \delta$
 - Comparing the point estimate to the limit (e.g.: 0.95)
 - Measure of similarity not dependent on goodness-of-fit
- 3. Potency within range of the assay system

Simulation Study

Simulation Study

- Simulation conditions based on hypothesis testing approach
 - $\delta = 0.84$
 - $\alpha = 0.05$
 - $D_L = 0.8, D_U = 1.25$
 - % CV = (1, 5, 10, 20)

Simulation Results

exactly parallel

Simulation Results

approximately parallel

Simulation Results

borderline parallel

Acknowledgements

- Adam P. Rauk
- Kristi L. Griffiths
- Bhavin Parekh

References

Faya, P., Rauk, A. P., Griffiths, K. L., & Parekh, B. (2020). A curve similarity approach to parallelism testing in bioassay. Journal of Biopharmaceutical Statistics, 1-13.

Li, R., Cai, W., & Zocher, M. (2017). A Novel Lack-of-Fit Assessment as a System Suitability Test for Potency Assays. PDA Journal of Pharmaceutical Science and Technology, 71(5), 368-378.

Novick, S., & Yang, H. (2019). A fast and reliable test for parallelism in bioassay. Journal of Biopharmaceutical Statistics, 29(6), 1011-1023.

Novick, S. J., Yang, H., & Peterson, J. J. (2012). A Bayesian approach to parallelism testing in bioassay. Statistics in Biopharmaceutical Research, 4(4), 357-374.

Stegmann, R. (2017). Challenges with Equivalence Testing According to USP <1032>. CASSS Bioassays 2017, Silver Spring, May 08, 2017

Questions?

Additional questions / comments can be sent to: faya_paul@lilly.com