Bioassay Development for Complex Biologics: A Case Study for a Prodrug

Victoria Swiss, Ph.D. Bioassay Center of Excellence, Bristol-Myers Squibb

Immuno-Oncology

 Harness the immune system to attack cancer by targeting Immune Checkpoint Inhibitors

- Nivolumab (anti-PD1) and Yervoy (anti-CTLA-4) are approved I-O drugs for treatment of many cancer types
- During I-O treatment, some patients experience immune related Adverse Events (irAEs)
- irAEs are thought to be due to 'on-target, off-tumor' effects
- New protein engineering approaches are being evaluated to reduce irAEs

What is a **Prodrug?**

Prodrug: a biologically inactive compound that can be metabolized to produce a drug

Prodrugs in Biologics Example: Probody™ Therapeutic

Example: CytomX Probody[™] Therapeutic

- Masking peptide covers the active antigen-binding site of the antibody
- Masking peptide cleaved by proteases enriched within the diseased tissue
- Probody[™] Therapeutic designed to provide 'On Target, On-tissue' activity

PROBODY is a trademark of CytomX Therapeutics, Inc.

Probody[™] Therapeutic Expands the Therapeutic Window of an Antibody Therapy

Example: Probody molecule targeting EGFR compared to Cetuximab (Anti-EGFR)

Comparable Efficacy to Cetuximab in mouse models

Decreased Toxicity to Cetuximab in nonhuman primates

Test article*	Dose (loading/ weekly), mg/kg	Dermatologic findings	
		Time to onset (study day) [†]	Extent and severity
Cetuximab	40/25	22, 23, 25	Mild to moderate
PB1	40/25	NO, NO, NO	Not applicable
PB1	120/75	9, 19, NO	Mild

Luc R. Desnoyers, Olga Vasiljeva, Jennifer H. Richardson, Annie Yang, Elizabeth E. M. Menendez, Tony W. Liang, Chihunt Wong, Paul H. Bessette, Kathy Kamath, Stephen J. Moore, Jason G. Sagert, Daniel R. Hostetter, Fei Han, Jason Gee, Jeanne Flandez, Kate Markham, Margaret Nguyen, Michael Krimm, Kenneth R. Wong, Shouchun Liu, Patrick S. Daugherty, James W. West and Henry B. Lowman (2013) **Tumor-Specific Activation of an EGFR-Targeting Probody Enhances Therapeutic Index,** *Sci Transl Med* **5**, 207ra144207ra144

Probody™ Therapeutic use in I-O

- Activated by proteases enriched at tumor microenvironment
- Minimal activity within non targeted tissues (minimize toxicity)

T-Cell Activation with Prodrug-1 (Pro1)

Prodrug-1 (Pro1)

- Designed to activate T-Cells specifically within tumor
- Probody[™] Therapeutic, activated by proteases enriched in tumor site

- Pro1 demonstrates minimal T-Cell activation
- Protease treated Pro1 has similar activity to parental mAb
- TWO distinct activities

How Do We Define Potency of Pro1?

• Two distinct activities due to two distinct states of the molecule

• Which state do we measure to assess potency?

From ICH Q6B:

Potency (expressed in units) is the quantitative measure of biological activity based on the attribute of the product which is linked to the relevant biological properties.

Measuring Potency of Pro1: Attributes linked to Biological Properties

Attributes Contributing to Full Activity

- 1. Substrate Linker
 - Cleavable site for activation
- 2. Parental Antibody
 - Target Binding, Fc interactions

Figure from: Lin J., Sagert J. (2018) Targeting Drug Conjugates to the Tumor Microenvironment: Probody Drug Conjugates. In: Damelin M. (eds) Innovations for Next-Generation Antibody-Drug Conjugates. Cancer Drug Discovery and Development. Humana Press, Cham

Potency Assay Strategy

Step 1. Activate Pro1

Activation - through linker

Step 2. Assess Biological Activity

Challenge for Assay Development: Activation Conditions Impact Sample Activity

- Partially activated *Pro1* demonstrates reduced antigen binding
- Partial activation of *Pro1* COULD be due to insufficient activation conditions and NOT sample properties

Ensure Activation Conditions are Reliable and Robust

Goals during assay development and beyond:

- 1. Understand Unique Critical Reagent (Protease)
- 2. Define Robust Activation Reaction Conditions
- 3. Maintain Controlled Conditions during assay Lifecycle

Understand Unique Critical Reagent

Protease Considerations

- Supplied with guaranteed activity using manufacturer's substrate, Specific activity listed = "> XX units/min/ug"
- How does this relate to Pro1?
- How do we determine working concentration of protease?

Approach:

Use *Pro1* Activity Assay to measure Protease activation

- Protease activity is not binary
- Readout of protease activity requires
 - Full Pro1 dose curve
 - Comparison to Parental mAb
 - Several concentrations of protease to understand working range

Pro1 Concentration

Define Robust Activation Conditions

• Enzyme Kinetics are influenced by <u>interacting factors</u> (Reaction time, substrate (*Pro1*) and enzyme concentration)

Hypothetical Interactions

Goal: Find multi-parameter conditions which meet assay needs
Bristol-Myers Squibb

Define Robust Activation Conditions Experimental Approach to optimize conditions for *Pro1*

Highly influential factors optimized simultaneously

Experimental Design

Condition	Incubation Time	Protease Concentration	
	(Low, Med, High)	(Low, Med, High)	
1	Low		
2	Med	Low	
3	High		
4	Low		
5	Med	Med	
6	High		
7	Low		Γ
8	Med	High	
9	High		

Assessment with two orthogonal methods

Readout#1 –Activation Detected by Chromatography

Readout#2 –Activation Detected by Antigen Binding Activity

*Optimal conditions require finding the right combination of parameters Strategy ensures Robustness with a QC friendly allowance for Incubation Time

Maintain Controlled Activation Conditions During Assay Lifecycle

Objective: Design bioassay to ensure proper **Pro1** activation conditions

Typical Bioassay:

<u>Challenge</u>: How do we control assay for activation conditions without dependence on absolute curve parameters?

Maintain Controlled Activation Conditions During Assay Lifecycle

<u>Challenge</u>: How do we control assay for activation conditions without dependence on absolute curve parameters?

Pro1 Bioassay: Include a pre-activated Pro1 control in all assays

Complexities:

- Generation of pre-activated *Pro1* in large scale
- Qualification activities of pre-activated Pro1

Overall Activity Assay: Potency Assay

Pro1 Bioassay Development:

Multifactorial Approach: Define Suitable Parameters for Each Incubation

Condition	Experimental Parameter			
Number	Incubation A	Incubation B	Incubation C	
1	-	-	-	
2	-	-	+	
3	-	+	-	
4	-	+	+	
5	+	-	-	
6	+	-	+	
7	+	+	-	
8	+	+	+	

Shortest time allowable (-) Longest time allowable (+)

Representative Data from Condition #4

ALL Conditions - Sample Potency Determinations

Defined parameters provide suitable assay performance

Potency Assay for *Pro1* Meets Performance Expectations

Linearity

Accuracy / Precision

Nominal %	Mean % Recovery	
Sample	40	97
	70	101
	100	102
	130	105
	160	103
Ме	102	
%	4%	

N = 30

Optimized assay meets performance expectations for accuracy, linearity, precision, specificity and range

Summary and Conclusions

- A significant challenge for Immuno Oncology product development has been modeling MoA complexity
 - This challenge is increasing with increased product complexity
- *Prodrug 1* Potency Assay:
 - Was developed with incorporation of specific critical reagent performance in mind
 - Includes assay acceptance criteria to control for activation
 - Is accurate and precise and supports long-term product needs related to release and stability testing

Acknowledgements

Biologics Development, Molecular & Analytical Development

Bioassay Center of Excellence Diana Karagiozova Patrick Kuehne Alexandria Emory Marisol Palmieri Lisa Lundberg Ruojia Li Tara Stauffer Marcel Zocher <u>Analytical Methods Development</u> Sanjeewa Rupasinghe Madesh Belakavadi Tapan Das

Abstract

Next generation biologics are now being developed that are designed for more efficacy and less toxicity than parent molecules. By nature, these molecules have increased biological complexity with mechanisms of action (MOAs) often involving multiple steps to elicit true biological response. Biologics that are prodrugs are engineered to be in an inactive state during drug administration (non-antigen binding state) and then converted to an activated state (antigen binding state) in the tumor. Bioassays to measure potency of prodrug biologics therefore include an activation step which must be methodically controlled. Here we describe how suitable prodrug activation conditions were defined in conjunction with additional assay conditions to ensure consistent bioassay performance.

