BIOASSAYS IN PRODUCT DEVELOPMENT: An Immuno-Oncology Perspective

CASSS Bioassays May 09, 2017 Tara Stauffer

Overview

Introduction:

- Cell-based bioassays in IO product development
- Immuno-Oncology (IO)
- Monoclonal Antibodies in IO
- Challenges for potency assay development in IO
- Case studies
 - Late phase optimization to meet performance targets
 - Role of bioassays in determining structure-function relationships
- Conclusions

Role of Bioassays in Development of Immunotherapeutic Products

Cell-based Bioassays are Unique Tests

- Specifically designed for each product
- Should inform on higher-order structure and the impact of specific molecular changes
- Must represent the mechanism of action for that product
- For potency testing of immunotherapeutic products in IO, the bioassay must model the interaction of complex pathways and molecules

Immuno-Oncology (IO) Harnessing the Immune System for Cancer Therapy

Mellman, et al., Immunity 2013 39:1-10

Monoclonal Antibodies in IO Well-Characterized Biologics

Challenge for IO:

Reliably assess a highly complex MoA in vitro

Bioassays for Complex MOAs Previous "Holy Grail": ADCC Assays Suitable for Product Development

Mechanistic Options for Assessing Potency of Immuno-Oncology Therapeutic Products

Challenge:

- Co-stimulation and checkpoint inhibitors inherently complex to model *in vitro*
- Requires primary signal
- Expression of co-stimulatory molecules on lymphocytes tightly regulated

Solution:

- Capture function of domains outside true biological activity (binding *via* ELISA, SPR)
- Cell-Based Potency Assays
 - T-cell activation assays
 - Engineered cell lines
 - Reporter gene systems

Potency Assays for Immuno-Oncology Case Study #1: Optimizing Mechanistically Complex Bioassay Models

- System: Activation of CD4+ T cells
- Complex system with primary signal requirement, co-stimulation agonist Assay format using anti-CD3 coated plates

Drivers for Late-phase Optimization Assay Performance and Operational Requirements

Relative Potency Distribution

Proof-of-concept assay requires optimization for late-phase implementation

Operational requirements include ELISA readout with multi-source reagent availability

Design Criteria for Assay Optimization

- State-of-the art System Suitability and Sample Acceptance Criteria
- Performance criteria must be met
- Transferable to a QC environment
- Assay readout must meet operational requirements

Operational Bioassay Challenge: Solution: Optimize ELISA Detection System and Maximize Signal

[mAb X] ng/ml	IL-2 Detected (pg/ml)				
	Luminescent ELISA	TMB ELISA	Kit-based ELISA		
500	135.0	130.8	50.7		
250	135.6	130.2	40.4		
125	106.4	98.4	15.7		
62.5	78.4	69.8	4.1		
31.25	25.6	29.5	ND		
15.6	10.2	ND	ND		
7.8	ND	ND	ND		
0	ND	ND ND			
Signal					
Bkgd	53	16	49		

- No kit
- Reagent Control

- Simplified transfer
- Any luminescent reader

Optimizing Assay Readout: *ELISA Development Approach*

- Selected IL-2 antibody combinations
- Examined combinations of unlabeled coating and biotinylated detection antibodies using purified IL-2 protein

- Coating conditions*
- Blocking conditions
- Detection antibody concentration
- SA-HRP concentration*
- Luminol/peroxide substrate*
- Incubation lengths
- Optimal ELISA plate type*
- Signal detection parameters

*multiple vendor availability

Parameters assessed by effect on overall signal, signal:background at various IL-2 concentrations, availability of replacements/impact if required

Maximizing Co-Stimulatory Response Effect of Anti-CD3 concentration

Additional optimization parameters included cell handling, stimulation time and cell density effects

Individual components of T-cell activation response were optimized for maximum IL-2 release

Potency Assays for Immuno-Oncology *Rigorously Developed Systems Can Meet Performance Expectations*

Optimized assay meets performance expectations for accuracy, linearity, precision, specificity and range

Case Study #1 Conclusions

- Bioassays must be designed for intended use and for the product lifecycle
- Both assay performance and operational drivers for late-phase programs need to be considered
- Complex MoAs can be modeled in vitro with rigorous assay development
- Rigorously developed bioassays can meet performance expectations

Role of Bioassays in Development of Immunotherapeutic Products

- Case Study #1 highlights how rigorously designed, MoAreflective assays can be used release and stability
- How else might bioassays be employed in product development?
- What can be learned from the bioassay that orthogonal methods may not inform?

Bioassay in Structure-Function Relationships

- Ideal bioassay is MoA-reflective and stabilityindicating
- Bioassays play a role in ensuring higher-order structure is consistent throughout manufacturing
- Are integral in determining CQAs, can assist with setting CQA specifications
- Correlate molecular changes with bioactivity
- As such, bioassay can elucidate impact of these changes on a mechanistic level in conjunction with other analytical tests

Case Study #2: Impact of High Molecular Weight Formation on Bioactivity

- Monoclonal antibody to immune checkpoint molecule expressed on surface of T-cells
 - mAb drug substance exposed to pH 3.0
 - HMW species were identified
- Potency assays used for characterization:
 - ELISA to detect binding of mAb to receptor
 - Competition ELISA to detect mAb disruption of receptor binding to ligand
 - Surface Plasmon Resonance for further binding evaluation
 - Cell-based bioassay for T-cell activation

Case Study #2: Impact of Low-pH Induced HMW Species on Potency

Sample	Observed Changes in	Relative Potency			
	Physicochemical Properties	Bioassay	Competition ELISA	Binding ELISA	
Control	N/A	91%	112%	101%	
Low pH (3.0)	Increase in HMW species (0.3% - 56%)	>175%	41%	24%	

Relative potency as a function of HMW formation

All assay formats indicate potency changes, but opposite trends

Cell-based bioassay and ELISA yield inverse responses

Enriched Size Variants from Drug Substance

SEC used to enrich HMW and monomer species from drug substance.

SPR used to further assess binding

		SE-HPLC		Relativ	e Potency		SPR	
Fraction	HMW%	Monomer %	LMW%	Bioassay	Competition ELISA	К _а (М ⁻¹ s ⁻¹)	К _d (S ⁻¹)	K _D
Control	0.5	99.3	0.2	94%	92%	3.59E+05	2.59E-05	72 pM
Dimer Enriched	76.0	24.0	ND	>175%	72%	3.41E+05 (105%)	3.34E-05 (78%)	98 pM
Monomer Enriched	0.2	99.8	ND	101%	91%	3.66E+05 (98%)	2.19E-05 (119%)	60 pM

Dimeric species lead to increased potency in bioassay

Case Study #2: Assay Format Influences Data Interpretation

Sample	Competition ELISA (% Relative Potency)	T-Cell Activation Bioassay (% Relative Potency)	K _D
Control	92	94	72 pM
Dimer	72	>175%	98 pM

- Both formats are designed to measure disruption of target-ligand binding
- Bioassay informs as to mechanism of mAb dimer on Tcell activation

Case Study #2 Conclusions

- Low pH induces HMW formation for this molecule
- Bioassay and binding assays demonstrate inverse responses for relative potency of HMW species
- Isolated dimer leads to increased potency in a cellbased assay, but decreased potency in a binding assay
- Decreased binding activity is consistent with lower affinity (K_D) of the dimer
- Enhanced T-cell response measured by cell-based bioassay indicates increased avidity of the dimer
- Bioassay data indicate that clustering of the mAb may play a role in enhancing T-cell activation

Summary

- Significant challenge for IO mAb product development is modeling the complexity in vitro
- Well-developed bioassays for therapeutic products in IO can be accurate and precise, and therefore suitable for release and stability testing
- Mechanistically-relevant bioassays can provide information on the impact of structure-function modifications in conjunction with other analytical tests

Acknowledgements

Bioassay Center of Excellence

LeeAnn Benson-Ingraham

Kendall Carey

Caren Harrison

Cynthia Inzano

Patrick Kuehne

Ryman Navoa

Marisol Palmieri

Colleen Santoro

Colleen Quinn

Jessie Yin

Marcel Zocher

Mass Spectrometry and Biophysics Center of Excellence Kelvin Bai Yunping Huang Rong Yang Li Tao Tapan Das

