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Overview

• Introduction: 

• Cell-based bioassays in IO product development

• Immuno-Oncology (IO)

• Monoclonal Antibodies in IO

• Challenges for potency assay development in IO

• Case studies

• Late phase optimization to meet performance targets

• Role of bioassays in determining structure-function 
relationships

• Conclusions
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Role of Bioassays in Development of 
Immunotherapeutic Products

3

Release

Stability

Characterization

Comparability

Specifications

Inform 

Development 

Decisions

Bioassay



Cell-based Bioassays are Unique Tests 

• Specifically designed for each product 

• Should inform on higher-order structure and 
the impact of specific molecular changes

• Must represent the mechanism of action for 
that product

• For potency testing of immunotherapeutic 
products in IO, the bioassay must model the 
interaction of complex pathways and 
molecules
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Immuno-Oncology (IO)
Harnessing the Immune System for Cancer Therapy 
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Mellman, et al., Immunity 2013 39:1-10



Monoclonal Antibodies in IO
Well-Characterized Biologics

Challenge for IO:

Reliably assess a highly complex MoA in vitro
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Bioassays for Complex MOAs
Previous “Holy Grail”: ADCC Assays Suitable for Product Development 

Prior challenges:
Highly Variable

Poorly reproducible

State of the Art:
Highly Precise, Very Accurate

Antibody concentration (mg/mL)

IO Target

Control

IO Target System

mAb FcR

Target 

protein

Target 

cell

Cell Death

 ADCC
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Challenge: 

• Co-stimulation and checkpoint inhibitors inherently complex to 
model in vitro

• Requires primary signal

• Expression of co-stimulatory molecules on lymphocytes tightly 
regulated

Solution:

• Capture function of domains outside true biological activity 
(binding via ELISA, SPR)

• Cell-Based Potency Assays

• T-cell activation assays

• Engineered cell lines

• Reporter gene systems
8

Mechanistic Options for Assessing Potency 
of Immuno-Oncology Therapeutic Products



Potency Assays for Immuno-Oncology
Case Study #1: Optimizing Mechanistically Complex Bioassay Models
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System: Activation of CD4+ T cells

Complex system with primary signal requirement, co-stimulation agonist

Assay format using anti-CD3 coated plates
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Drivers for Late-phase Optimization
Assay Performance and Operational Requirements
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Relative Potency Distribution

Proof-of-Concept 

Assay Parameter

Value

Mean 102.4

SD 18.5

Upper 95% Mean (CI) 107.1

Lower 95% Mean (CI) 97.8

Proof-of-concept assay requires 

optimization for late-phase 

implementation

mAb (ng/mL)
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Graph#1

4-P Fit: y = (A - D)/( 1 + (x/C)^B ) + D: A B C D R^2

Plot#2 (S1: Concentration vs Values) 34.3 1.81 64.2 1.68e+03 0.971

Plot#3 (S2: Concentration vs Values) 69.3 2.57 53.5 1.55e+03 0.948
__________

Weighting: Fixed

Operational requirements include ELISA readout with 

multi-source reagent availability



Design Criteria for Assay Optimization

Bioassay Development:
Co-stimulation of CD4+ 

T-cell line

Two Components
Readout 

(ELISA Endpoint)
Bioassay

Cell Subculture 
Standardization

Optimization of 
Primary Signal 

Component

Maximize Cytokine 
Release

Probe Cytokine 
Release of 

stimulated CD4+ T-
cell line

Identify sandwich 
ELISA antibody pair 
to detect cytokine 

release

Optimize readout 
parameters for 

sensitivity

Bioassay 
Development:

Co-stimulation of 
CD4+ T-cell line

Two Components
Readout 

(ELISA Endpoint)
Bioassay

Cell Subculture 
Standardization

Optimization of 
Primary Signal 

Component

Maximize Cytokine 
Release

Probe Cytokine 
Release of 

stimulated CD4+ T-
cell line

Identify sandwich 
ELISA antibody pair 
to detect cytokine 

release

Optimize readout 
parameters for 

sensitivity

Final Bioassay 
Method

• State-of-the art System 
Suitability and Sample 
Acceptance Criteria

• Performance criteria must 
be met

• Transferable to a QC 
environment

• Assay readout must meet 
operational requirements
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Operational Bioassay Challenge: 
Solution: Optimize ELISA Detection System and Maximize Signal
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 No kit

 Reagent Control

 Simplified transfer

 Any luminescent reader

[mAb X] 

ng/ml

IL-2 Detected (pg/ml)

Luminescent 

ELISA

TMB 

ELISA

Kit-based 

ELISA

500 135.0 130.8 50.7

250 135.6 130.2 40.4

125 106.4 98.4 15.7

62.5 78.4 69.8 4.1

31.25 25.6 29.5 ND

15.6 10.2 ND ND

7.8 ND ND ND

0 ND ND ND

Signal:

Bkgd
53 16 49

[MAb X] ug/ml
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4-P Fit: y = (A - D)/( 1 + (x/C)^B ) + D: A B C D R^2

Plot#1 (Reference: concentration vs MeanValue) 1.72e+04 2.04 72.9 1.41e+06 0.994

Plot#2 (Isotype control: concentration vs MeanValue) 3.04e+04 43.3 15.6 7.98e+04 0.851
__________

Weighting: Fixed
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• Selected IL-2 antibody combinations

• Examined combinations of unlabeled coating and biotinylated detection antibodies 
using purified IL-2 protein
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Parameters assessed by effect on overall signal, signal:background at various IL-2 

concentrations, availability of replacements/impact if required
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• Coating conditions*

• Blocking conditions

• Detection antibody concentration

• SA-HRP concentration*

• Luminol/peroxide substrate*

• Incubation lengths

• Optimal ELISA plate type*

• Signal detection parameters

*multiple vendor availability

Optimizing Assay Readout: 
ELISA Development Approach



Maximizing Co-Stimulatory Response
Effect of Anti-CD3 concentration
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Additional optimization parameters included cell handling, 

stimulation time and cell density effects

Individual components of T-cell activation response were 

optimized for maximum IL-2 release



Potency Assays for Immuno-Oncology
Rigorously Developed Systems Can Meet Performance Expectations
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Optimized assay meets performance expectations for 
accuracy, linearity, precision, specificity and range

Linearity
Accuracy



Case Study #1 Conclusions

• Bioassays must be designed for intended 
use and for the product lifecycle

• Both assay performance and operational 
drivers for late-phase programs need to be 
considered

• Complex MoAs can be modeled in vitro with 
rigorous assay development

• Rigorously developed bioassays can meet 
performance expectations
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Role of Bioassays in Development of 
Immunotherapeutic Products
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• Case Study #1 highlights how 

rigorously designed, MoA-

reflective assays can be used 

release and stability

• How else might bioassays be 

employed in product 

development?

• What can be learned from the 

bioassay that orthogonal 

methods may not inform?



Bioassay in Structure-Function Relationships 

• Ideal bioassay is MoA-reflective and stability-
indicating

• Bioassays play a role in ensuring higher-order 
structure is consistent throughout 
manufacturing

• Are integral in determining CQAs, can assist 
with setting CQA specifications 

• Correlate molecular changes with bioactivity

• As such, bioassay can elucidate impact of 
these changes on a mechanistic level in 
conjunction with other analytical tests
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Case Study #2: 
Impact of High Molecular Weight Formation on Bioactivity

• Monoclonal antibody to immune checkpoint molecule 
expressed on surface of T-cells

• mAb drug substance exposed to pH 3.0 

• HMW species were identified

• Potency assays used for characterization: 

• ELISA to detect binding of mAb to receptor

• Competition ELISA to detect mAb disruption of receptor 
binding to ligand

• Surface Plasmon Resonance for further binding evaluation

• Cell-based bioassay for T-cell activation
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Case Study #2: 
Impact of Low-pH Induced HMW Species on Potency 

Sample Observed Changes in 

Physicochemical 

Properties

Relative Potency

Bioassay Competition ELISA
Binding 

ELISA

Control N/A 91% 112% 101%

Low pH (3.0) Increase in HMW species

(0.3% - 56%)
>175% 41% 24%
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Relative potency as a function of 

HMW formation

All assay formats indicate 

potency changes, but opposite 

trends

Cell-based bioassay and ELISA yield inverse responses



Enriched Size Variants from Drug Substance
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SEC used to enrich HMW and 

monomer species from drug 

substance.  

SPR used to further assess 

binding

SE-HPLC Relative Potency SPR 

Fraction HMW% Monomer % LMW% Bioassay
Competition 

ELISA

Ka

(M-1s-1)

Kd

(S-1)

KD

Control 0.5 99.3 0.2 94% 92% 3.59E+05 2.59E-05 72 pM

Dimer Enriched 76.0 24.0 ND >175% 72%
3.41E+05

(105%)

3.34E-05

(78%)
98 pM

Monomer Enriched 0.2 99.8 ND 101% 91%
3.66E+05

(98%)

2.19E-05

(119%)
60 pM

Dimeric species lead to increased potency in bioassay

*

*



Case Study #2: 
Assay Format Influences Data Interpretation
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• Both formats are designed to measure disruption of 

target-ligand binding

• Bioassay informs as to mechanism of mAb dimer on T-

cell activation

Sample Competition

ELISA 

(% Relative 

Potency)

T-Cell Activation 

Bioassay 

(% Relative 

Potency)

KD

Control 92 94 72 pM

Dimer 72 >175% 98 pM
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= signal
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= signal
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Case Study #2 Conclusions

• Low pH induces HMW formation for this molecule

• Bioassay and binding assays demonstrate inverse 
responses for relative potency of HMW species

• Isolated dimer leads to increased potency in a cell-
based assay, but decreased potency in a binding 
assay

• Decreased binding activity is consistent with lower 
affinity (KD) of the dimer

• Enhanced T-cell response measured by cell-based 
bioassay indicates increased avidity of the dimer

• Bioassay data indicate that clustering of the mAb may 
play a role in enhancing T-cell activation
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Summary

• Significant challenge for IO mAb product 
development is modeling the complexity in vitro

• Well-developed bioassays for therapeutic 
products in IO can be accurate and precise, and 
therefore suitable for release and stability 
testing

• Mechanistically-relevant bioassays can provide 
information on the impact of structure-function 
modifications in conjunction with other 
analytical tests
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