Development of an Analytical Toolbox for the Detection, Confirmation and Characterisation of Partially Reduced Species in Monoclonal Antibodies

Analytical Technologies Europe
Vanessa Wong
Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK

11 May 2023
Overview

➢ Introduction

➢ Detection:
 ▪ Fragmentation monitoring
 ▪ Anomalies observed during routine testing

➢ Confirmation:
 ▪ PA800+ (gold standard technique)
 ▪ Possible cause of fragmentation

➢ Characterisation
 ▪ Heavy Chain or Light Chain dimer?
 ▪ LC-ESI-QTOF-MS

➢ Summary and questions
Fragmentation

A major degradation pathway ubiquitous to all monoclonal antibodies

Fragmentation:
Peptide hydrolysis
Reduction of disulphide bonds

Important to monitor due to safety & efficacy concerns!

Figures obtained from BioRender
A (brief) introduction to CE-SDS

- Capillary Electrophoresis – Sodium Dodecyl Sulphate
- Proteins are denatured using SDS -> gives proteins similar mass to charge ratio
- Protein is separated in capillary based on their hydrodynamic size
Detection:
• HPSEC
• MCE

HPSEC = High Performance Size Exclusion Chromatography
MCE = Microchip Capillary Electrophoresis
Purity Monitoring

Lab Chip GX II Touch by Perkin Elmer
- Microchip CE-SDS
- High Throughput capabilities
- Used for screening high numbers of in process samples

PA800 plus by SCIEX
- Industry gold standard for CE-SDS – highly resolved fragments
- Lower throughput capabilities

Size Exclusion Chromatography
- Better suited for aggregate detection than fragments
- Underestimates fragmentation
Anomalies observed during routine testing

• Anomalous levels of fragmentation was observed in a sample using MCE.
• Lot A showed increased fragmentation when compared to control Lot B

LMWS = Low molecular weight species
High Performance Size Exclusion Chromatography

- Run in tandem to MCE
- HPSEC also shows a small LMWS peak but this is significantly smaller than the peaks observed in MCE
Comparing Fragmentation Levels

<table>
<thead>
<tr>
<th>Sample</th>
<th>HPSEC</th>
<th>Non-reduced MCE</th>
<th>Non-reduced CE-SDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Major Product peak (%)</td>
<td>Fragment (%)</td>
<td>Major Product peak (%)</td>
</tr>
<tr>
<td>Lot A</td>
<td>97.1*</td>
<td>0.4</td>
<td>96.4</td>
</tr>
<tr>
<td>Lot B</td>
<td>99.4</td>
<td>0.0</td>
<td>99.1</td>
</tr>
</tbody>
</table>

* % High molecular weight species not shown in table.

- HPSEC shows significantly less % fragmentation compared to nrMCE
- HPSEC not suitable for fragmentation monitoring
- Significant difference between MCE and CE-SDS % fragmentation
- MCE still able to distinguish between pure and impure samples
MCE vs CE-SDS

- Five equally resolved species observed in both techniques.
- MCE unable to resolve ng-IgG shoulder from the main peak which is well resolved in CE-SDS.
- Able to detect all major LMWs and increased fragmentation in both techniques.

MCE remains a good option for use in HT screening assays in place of conventional CE-SDS.
Confirmation

Detection:
• HPSEC
• MCE

Confirmation:
• CE-SDS
Lot A and B run on conventional CE-SDS confirmed presence of all LMWs detected in MCE
Possible Fragmentation Pathway Determined via CE-SDS

Fragments = partially reduced species!
Characterisation

Detection:
• HPSEC
• MCE

Confirmation:
• CE-SDS

Characterisation
Initial Characterisation
Further Peak Characterisation

Non-reduced CE-SDS

Reduced CE-SDS
Heavy Chain or Light Chain Dimer?

<table>
<thead>
<tr>
<th>Fragment</th>
<th>Theoretical Mass (Da)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Chain Dimer</td>
<td>48294</td>
</tr>
<tr>
<td>Heavy Chain</td>
<td>49952</td>
</tr>
</tbody>
</table>
LC-ESI-QTOF-MS Analysis
(Liquid chromatography electrospray ionisation quadrupole time-of-flight mass spectrometry)

<table>
<thead>
<tr>
<th>Component</th>
<th>Theoretical Mass (Da)</th>
<th>Observed Mass (Da)</th>
<th>ppm error (absolute value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact deglycosylated mAb</td>
<td>148196</td>
<td>148202</td>
<td>37</td>
</tr>
<tr>
<td>HHL</td>
<td>124053</td>
<td>124057</td>
<td>32</td>
</tr>
<tr>
<td>HH</td>
<td>99906</td>
<td>99911</td>
<td>40</td>
</tr>
<tr>
<td>HL</td>
<td>74100</td>
<td>74102</td>
<td>28</td>
</tr>
<tr>
<td>HC</td>
<td>49952</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>LL</td>
<td>48294</td>
<td>48295</td>
<td>26</td>
</tr>
<tr>
<td>LC</td>
<td>24147</td>
<td>24147</td>
<td>0</td>
</tr>
</tbody>
</table>
Fully characterised fragments!

LC-MS was able to characterise all fragment peaks
Summary: Analytical Workflow

Detection:
- HPSEC
- MCE

Confirmation:
- CE-SDS

Characterisation:
- MS
This article was published in “Systematic analytical workflow for characterisation and identification of partially reduced species in monoclonal antibody manufacturing”, vol. 666, V. Wong et al, Analytical Biochemistry, 115073, Copyright Elsevier (2023) https://doi.org/10.1016/j.j.ab.2023.115073
Thank you! 😊
Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com