

47x

 $(P1, VP2, VP3) = \frac{00!}{VP1|VP2|}$

Ten years of AAV analyses by native MS

CASSS – AT Europe – Joost Snijder

Adeno Associated Viruses as tools for gene delivery

- Parvoviruses
- ssDNA genome (~4 kb)
- Serotypes with wide range of tissue tropism
- Gene delivery in cell culture and animal models
- Vector for CRISPR-Cas9 gene editing
- Approved gene therapies
 - Zolgensma
 - Glybera
 - Luxturna
 - **...**
- Engineered AAV capsids with tuned tropism

AAV capsids consist of a mixture of 3 *cap* isoforms

How are the VP capsid proteins arranged?

total # of possible stoichiometries is 1891!

Woerner et al. 2021, NCOMMS
netherlandsproteomicscentre

Native MS as a tool to study virus assembly

- VP1/VP2 unique regions are not resolved in Xtal/cryoEM reconstructions
 - The 1891 possible stoichiometries have unique masses!
- Mass analysis of very large protein complexes under native conditions
- nanoESI for gentle transfer to gas phase
- High mass accuracy and resolving power to study composition
- Can we determine the composition of the AAV capsids?

Modified QTOF platform enables native MS of megadalton virus capsids

AAV capsids are heterogeneous

A new Orbitrap-based platform for native MS in the MDa range

Improved resolution on the Orbitrap platform: what can we learn about AAV assembly?

AAV spectra are shaped by interference patterns

- AAV capsids are heterogeneous
- Coincidentally, signals appear at m/z where:
 - The masses of +3*VP2 overlap
 - The masses of +1*VP1 overlap
- At the current resolution no more than 3 series of peaks are resolved
- The convoluted peak positions shift according to the ratio of VP1:VP2:VP3

Snijder et al. 2014, JACS

The interference patterns in AAV spectra shift with changing VP ratios

Woerner et al. 2021, NCOMMS

AAV capsids assemble stochastically from a mixed pool of VP1/VP2/VP3

AAV9: 6% VP1 / 16% VP2 / 78% VP3 (from LC-MS)

Woerner et al. 2021, NCOMMS

Stochastic assembly model fits experimental spectra of AAV capsids

Woerner et al. 2021, NCOMMS

AAV preps may contain large subpopulations without a single copy of VP1 or VP2

Woerner et al. 2021, NCOMMS

AAV capsids assemble stochastically from a mixed pool of VP1/VP2/VP3

- AAV capsids are a mixture of 1891 unique stoichiometries of VP1/VP2/VP3
- Even the single-most abundant VP ratio represents less than 2.5% of the total capsid population
- For a given stoichiometry there are 60!/(VP1!VP2!VP3!) unique configurations
 - Less than 60-fold redundancy (icosahedral symmetry)
 - ~10¹² unique configurations of 5:5:50 ratio
- Probability of an AAV capsid with an exact composition+configuration is ~10⁻¹⁴

... but what about the genome filled particles?

The Orbitrap can detect individual ions at unique frequencies

Woerner et al. 2020, Nature Methods

The intensity of individual ions scales linearly with charge state: CD-MS

Woerner et al. 2020, Nature Methods

Single particle CD-MS of AAV resolves empty, full, and aberrant capsid products

- Single ion detection of AAV capsids
- Resolving empty and full
- Detecting aberrant side products
- Quantitative sampling of subpopulations

Woerner et al. 2020, Nature Methods
Inetherlandsproteomicscentre

20

Using CD-MS for characterization and quality control of AAV

Woerner et al. 2021, Mol Therapy – Methods & Clinical development

CD-MS can quantitatively monitor subpopulations of **AAV** capsids

- Monitoring AAV packaging
- Evaluating the quantitative accuracy
- Empty capsids are mixed with 'full' capsids
- Subpopulations resolved in CD-MS
- Quantitatively accurate

Woerner et al. 2021, Mol Therapy – Methods & Clinical development

Ten years of AAV analysis by native MS

- AAV capsids are heterogeneous
- Particles assemble stochastically from a mixed pool of VP1/VP2/VP3
- VP ratios can be accurately determined from native MS spectra

New Orbitrap based platforms for native MS enable high resolution analysis of AAV

 Orbitrap based CD-MS enables accurate monitoring of empty:full ratios, and detection of aberrant side products

Acknowledgements

- BioMS and Proteomics group UU
 - Tobias Woerner
 - Albert Heck
- University of Florida
 - Antonette Bennett
 - Mavis Agbandje-McKenna
- Pfizer
 - Thomas Powers
 - Olga Friese
- ThermoFisher Scientific
 - Konstantin Aizikov
 - Kyle Fort
 - Eugen Damoc
 - Eduard Denisov
 - Alexander Makarov

Inetherlandsproteomicscentre

institute for chemical immunology

