Horizontal standards for mABs: Recent experiences @MAB WP

**AT Europe 2023** 10-12 May 2023

**Dr. Francesca Luciani** National Center for the Control and Evaluation of Medicines Istituto Superiore di Sanità Rome, Italy





## Disclaimer

The content of the following presentation represents the speaker's view and does not necessarily reflect an official point of view

## Presentation outline

- Ph.Eur. and MAB WP approaches in developing horizontal standards
- cIEF study:
  - "Comparability" between cIEF and icIEF
  - Pitfalls, approaches and perspectives
  - The text: recommendations
- New general texts: recent developments
- Concluding remarks





#### **Ph. Eur. Approaches to Public Standard-Setting**



5 © EDQM, Council of Europe, 2022. All rights reserved. Courtesy of M.Buda - EDQM

\*\* to be published in Ph. Eur. Supplement 11.1 (Oct. 2022)



## Horizontal Standard Development: the first step

- New general chapter Cell-based assay for potency determination of TNFalpha antagonists (2.7.26) adopted by the European Pharmacopoeia (Ph. Eur.) Commission at its 172nd session in March 2022
- First of three planned new horizontal standards for monoclonal antibodies (mAbs)
- Text published in Ph. Eur. Supplement 11.1 along with updated monographs on TNF-alpha antagonists to create link to the new text (TNFalpha bioassay package)
- Implemented on 1 April 2023



## Horizontal Standard Development Beyond Product Class

2.5.43 Size exclusion chromatography for recombinant therapeutic monoclonal antibodies:

- widely used methodology for determination of size variants (monomer, HMWS); quantitation of LMWS can be highly variable depending on the mAb analysed
- SE-HPLC and SE-UPLC procedures, widely applicable to mAbs, given as examples
- suitability demonstrated by collaborative study

2.5.44 Capillary isoelectric focusing for recombinant therapeutic monoclonal antibodies:

- (i)cIEF procedures for analysis of charge heterogeneity of mAbs, to monitor identity, quality, production consistency
- based on data generated in multilaboratory verification study
- guidance on the aspects to consider for product-specific application (validation)

Well-defined analytical procedures and tools to control performance (including reference materials) and facilitate analytical assessment of key quality attributes of mAbs



### "Horizontal" texts: indicating a direction

- Well-defined analytical procedures and tools
- Evaluation by mean of collaborative studies involving more labs
- Based on validated methods on a single molecule, and extended to a class
- Basic principles collected e.g.:
  - System suitability criteria
  - Minimal validation performance criteria
  - Indications for resolution and integration approach
  - Identification of appropriate control and reference materials
  - Not mandatory
  - Starting point for the development and validation of molecule-specific methods





## Charge heterogeneity as a CQA

- The major sources of charge-related heterogeneity of therapeutic IgG include differences in glycosylation and degradation pathways
- Potential impact on safety and efficacy
- One of the most used methods is capillary Isoelectric focusing (cIEF) used for:
  - Characterization
  - DS and DP release specifications (identity and purity) → comparison to a reference standard

| Major chemical<br>degradation pathways                              | Effect                           | Species<br>formed |
|---------------------------------------------------------------------|----------------------------------|-------------------|
| Sialylation                                                         | COOH addition                    | Acidic            |
| Deamidation                                                         | COOH formation                   | Acidic            |
| C-terminal lysine<br>cleavage                                       | Loss of NH2                      | Acidic            |
| Adduct formation                                                    | COOH formation<br>or loss of NH2 | Acidic            |
| Succinimide formation                                               | Loss of COOH                     | Basic             |
| Methionine, cysteine,<br>lysine, histidine,<br>tryptophan oxidation | Conformational<br>change         | Basic             |
| Disulfide-mediated                                                  | Conformational<br>change         | Basic             |
| Asialylation (terminal<br>Galactose)                                | Loss of COOH                     | Basic             |
| C-terminal lysine and                                               | NH2 formation<br>or loss of COOH | Basic             |



## cIEF as batch release assay

Table 4. A typical list of batch release assays for mAb drug substance.

| Attributes      | Methods                                          |
|-----------------|--------------------------------------------------|
| Safety          | Bioburden                                        |
| Safety          | Endotoxin                                        |
| General         | Appearance (color and clarity)                   |
| General         | pH                                               |
| General         | Concentration                                    |
| Identity        | Peptide mapping (LC-UV)                          |
| Purity          | SDS-PAGE/CE-SDS (non-Reducing and reducing)      |
| Purity          | SEC-HPLC                                         |
| Potency         | Antigen binding                                  |
| Potency         | Cell-based assay                                 |
| Potency         | Effector functions*                              |
| Charge/identity | IEX-HPLC/IEF/CIEF/CZE                            |
| Glycosylation   | N-glycan profiling by NP-HPLC of labeled glycans |
| Impurities      | HCPs                                             |
| Impurities      | Host cell DNA                                    |
| Impurities      | Residual protein A                               |

One of the most used methods is capillary Isoelectric Focusing (cIEF) used for:

- Characterization
- DS and DP release specifications (identity and purity) → comparison to a reference standard

CENTRO NAZIONALE CONTROLLO E VALUTAZIONE DEI FARMACI

\*If involved in the mechanism of action.

## cIEF collaborative study



- Experimental verification of a capillary isoelectric focusing (cIEF) procedure used to determine the distribution of charge isoforms of therapeutic mAbs
- The study aims to assess the suitability of a specific cIEF procedure to be applied as a generic method to monitor charge heterogeneity on a broad range of mAbs, as well as to discriminate between closely related mAbs.
- Several laboratories involved, including OMCLs,
- 7 different IgG1 mAbs tested



## cIEF : different systems available





The content of the entire capillary is detected at close time intervals during focusing. This allows the detection of the real-time focusing process with sequential images until the final focusing and separation of the analytes.



## Study steps

- "classical" cIEF method and protocol defined, on the basis of a validated (and approved) method from a mAb manufacturer
- Only broad range ampholyte used (pH 3-10)
- Method run on both cIEF and i-cIEF platforms
  - Same reagents and sample concentration, operating conditions, where possible (buffers, temperature, samples composition, etc...)
  - Adaptation to i-cIEF specific requirements
- Satisfactory performance on cIEF system
- Discrepant results on icIEF vs cIEF system



## **Reagents and materials**

|                            | cIEF                      | icIEF                                                |
|----------------------------|---------------------------|------------------------------------------------------|
| Anolyte solution           | 200 mM Phosphoric acid    | 80 mM Phosphoric acid *<br>in 0.1 % methyl cellulose |
| Catholyte solution         | 300 mM NaOH               | 100 mM NaOH *<br>in 0.1 % methyl cellulose           |
| <b>Mobilising Solution</b> | 350 mM acetic acid        | Not Necessary<br>(imaged cIEF system)                |
| Cathodic stabiliser        | 500 mM L-Arginin          | 500 mM L-Arginin                                     |
| Anodic stabilizer          | 200 mM iminodiacetic acid | 200 mM iminodiacetic acid                            |
| Urea solution              | 4.3 M                     | 4.3 M                                                |
| cIEF GEL                   | Urea-cIEF Gel 3 M         | Not Necessary<br>Cartridge ready to use              |
| TRIS-Buffer                | 20 mM (pH 8.0)            | 20 mM (pH 8.0)                                       |



## Operating volumes and sample solution

|           |                                          | cIEF                                                                             |                       | iclEF                                                                              |                       |
|-----------|------------------------------------------|----------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------|-----------------------|
| Ref. Sol. | Туре                                     | Composition                                                                      | Final<br>Volume<br>µL | Composition                                                                        | Final<br>Volume<br>µL |
| а         | pl Marker-Mix<br>(System<br>Suitability) | Urea-cIEF-Gel, Pharm.3-10,<br>stabilisers, pl Markers (all),<br><i>water R</i> . | 250                   | MC1%, Urea, Pharm.3-10,<br>stabilisers, pI Markers<br>(all),Tris B, <i>water R</i> | 200                   |
| b         | Sample Pre-Mix                           | Urea-cIEF-Gel,<br>Pharm.3-10, Stabilisers,<br>pl Markers (4.1, 9.5, 10)          | 240                   | MC1%, Urea,<br>Pharm. 3-10, Stabilisers pl<br>Markers (4.1, 9.5, 10)               | 166                   |
| С         | Blank                                    | Ref. Sol.b +Tris B                                                               | 250                   | Ref. Sol.b +Tris B+<br>Water R                                                     | 200                   |
| d         | Infliximab (CRS)                         | Ref. Sol.b+CRS+pl M 7+Tris B                                                     | 250                   | Ref. Sol.b+CRS+pl M<br>7+Tris B+Water R                                            | 200                   |
| TS        | Test Solution<br>(A,B,C,D,E,F)           | Ref. Sol.b+Desalted Sample                                                       | 250                   | Ref. Sol. b+Desalted<br>Sample+Water R                                             | 200                   |



#### Performance at comparable experimental conditions





#### Performance at comparable experimental conditions



CENTRO NAZIONALE CONTROLLO E VALUTAZIONE DEI FARMACI

## mAbs pl range and resolution



|               | Calculated (Vector<br>NTI) | Calculated<br>(MassLynx) |
|---------------|----------------------------|--------------------------|
| Adalimumab    | 8.7                        | 8.9                      |
| Atezolizumab. | 8.6                        | 8.8                      |
| Belimumab     | NA                         | NA                       |
| Bevacizumab   | 8.5                        | 8.7                      |
| Cetuximab     | 8.7                        | 8.9                      |
| Dalotuzumab   | 9.0                        | 9.1                      |
| Denosumab     | 8.8                        | 9.0                      |
| Eculizumab    | 6.0                        | 6.4                      |
| Elotuzumab    | 8.3                        | 8.0                      |
| Infliximab    | 7.1                        | 7.4                      |
| Ipilimumab    | 8.9                        | 9.1                      |
| Ixekizumab    | NA                         | NA                       |
| Natalizumab   | 8.0                        | 7.8                      |
| NISTmab       | 8.8                        | 9.0                      |
| Nivolumab     | 8.0                        | 8.3                      |
| Obinutuzumab  | 8.7                        | 8.8                      |
| Ofatumumab    | 8.8                        | 9.0                      |
| Palivizumab   | 9.0                        | 9.3                      |
| Panitumumab   | 6.8                        | 7.1                      |
| Pembrolizumab | 7.4                        | 7.8                      |
| Pertuzumab    | 8.7                        | 8.9                      |
| Ramucirumab   | 8.9                        | 8.6                      |
| Reslizumab    | NA                         | NA                       |
| Rituximab     | 9.1                        | 9.3                      |
| Trastuzumab   | 8.8                        | 9.0                      |

Isoelectric-points of 25 mAbs determined by icIEF and their theoretical calculations based on amino acids sequences. NA: not applicable when the light chains and heavy chains sequences were not available.

(A. Goyon et al. Journal of Chromatography B 1065–1066 (2017) 119–128)



## Comparison of cIEF and icIEF results

- Inconsistent profiles (different resolution power, variable across the pl scale)
- Different pls of the variants identified

Variability sources ?

- Different capillary length
- Additional mobilization phase
- Different software calibration approaches



## **Possible solutions**

careful re-evaluation of the factors known to have a significant impact on resolution, e.g. focusing time, ampholytes concentration and range, pH stabilisers (L-arginine/iminodiacetic Acid) concentration, urea concentration

- Further adjustment of experimental conditions of the protocol to be run on icIEF system
- Definition of an imaged-cIEF-specific protocol (from a MAH method validated and approved from a registered mAbs\ dossier)
  - Good resolution
  - Reduced measured pl values inconsistencies
  - Focus on reduced pl window



## Where are we now

- icIEF method verified by 3 labs
- Evaluation of results ongoing:
  - Comparable resolution
  - "Closer" pls
- Open questions:
  - Is measured pI an objective parameter?
    - Not to be used as a SST criterion
  - Is identification by cIEF possible only by comparison to a Reference standard?





## (i)cIEF general chapter 2.5.44

Draft general chapter on *Capillary isoelectric focusing for recombinant therapeutic monoclonal antibodies (2.5.44)* [version agreed at the last MAB WP meeting in March 2023];

- Timelines draft chapter:
  - publication for comments in Pharmeuropa 35.4 (October-December 2023) [of note: public deadline: 31/12/2023; NPA deadline: 29/02/2024]
  - review of comments by the MAB WP (March 2024)
  - submission for adoption by the Ph. Eur. Commission.





## (i)clEF general chapter 2.5.44 – Structure

- Procedure A (two step cIEF) and Procedure B (imaged cIEF)
- Distinguished sections:
  - Materials/samples/reference solutions
  - Operating conditions
  - System performance
  - System suitability
  - Assay acceptance criteria
- Common sections:
  - Introduction & Scope, Principle
  - Data analysis
  - Results
  - General recommendations

Points to consider in analytical procedure development; general considerations on validation





## Text recommendations

- Starting conditions for the development of a cIEF or imaged cIEF procedure for a specific mAb
- The extent of the analytical procedure development [..] should be determined based on suitability for a specific product (case by case)
- The measured pl values are affected by the testing environment
- The shape of the pH gradient [..] changes along with a change in the ampholytes used in the analysis. Therefore, careful consideration should be given to selection of ampholytes
- Optimisation may be needed to reach the desired resolution
- Validation needed for each mAb, to demonstrate the suitability of the analytical procedure for the intended use (release/stability)





### Ph. Eur. Standards for mAbs: Summary



#### PRODUCT KNOWLEDGE, CASE STUDIES, COLLABORATIVE TESTING

\*Buda M., Kolaj-Robin O., Charton E. *Biotherapeutic Products in the European Pharmacopoeia: Have all Challenges Been Tackled?* Generics and Biosimilars Initiative Journal. 2022;11(1)

## Conclusions

- Flexible concepts of standardisation
- Key quality attributes and associated testing strategies
- Provide common expectations and general methodologies applicable to wide range/classes of mAbs
- Provide guidance on aspects to consider when an analytical procedure is suitable for its intended purpose
- Contribute to standardisation of therapeutic monoclonal antibodies through rationalisation of methodologies and common functionalities
- Increase the knowledge and lead to technical standardization improvement





Francesca Luciani CASSS AT – 11 May 2023



# Thank you!

And Thanks to: Alessandro Ascione – CNCF ISS

Mihaela Buda - EDQM

Jaana Vesterinen (chair) & members of the MAB WP



Francesca Luciani CASSS AT – 11 May 2023



www.iss.it/centro-nazionale-per-il-controllo-e-la-valutazione-dei-farmaci

