HOW TO USE PROTEIN SPECIFIC RETENTION BEHAVIOR TO IMPROVE THE CHARACTERIZATION OF THERAPEUTIC ANTIBODIES

CASSS AT Europe, May 11th, 2023

Bastiaan L. Duivelshof, PhD
Importance of antibodies in the COVID-19 health crisis

Antibody self-testing for COVID-19 infections

Quick serology test for COVID-19 using a chromatographic immunoassay

Pathophysiological differences for COVID-19 antibodies

Decreased fucosylation for critically ill (ARDS) patients triggering excessive inflammations

Larsen et al. (2021) Science

** Therapeutic antibodies to treat infected patients**

Blocks spreading of the virus in the body and prevents hospitalization of high-risk patients
Benefits of using therapeutic monoclonal antibodies

Antigen binding domain
- Targeting potential of mAbs
- Blocking of receptors
- Neutralization of antigens

Immune mediated effector functions
- Cell-killing potential
- ADCC via FcyR binding
- CDC via C1q binding

Half life extension
- FcRn- receptor mediated recycling

Antibodies are ~ 800 times larger than paracetamol!

ADCC = Antibody-dependent cellular cytotoxicity, CDC = Complement-dependent cytotoxicity
Complex characterization of mAb-based products

Size-variants
- Aggregation
- Fragmentation

Charge variants
- Lys glycation
- Met oxidation

Site-specific
- N-terminal pyroGlu formation
- C-terminal lysine clipping

N-Glycosylation
- Asn

Fusion proteins
- N/O-Glycosylation of the fused partner

Bispecific mAbs
- Chain specific modifications
- Correct heterodimerization

Antibody-Drug Conjugates
- Drug load distribution (DLD)
- Drug to antibody ratio (DAR)
Chromatography provides an important tool for characterization.

I. Reversed Phase (RP)
- Columns: 50 – 150 x 2.1 mm
- Analysis time: 5 – 20 minutes

II. Ion-Exchange (IEX)
- Released glycan analysis on standard pore stationary phases

III. Hydrophilic Interaction (HILIC)
- Columns: 150 x 2.1 mm
- Analysis time: 30 - 40 minutes

All use long linear gradients and column equilibration times!
Speeding-up by using protein-specific elution behavior

Using the ON-OFF or Bind-and-elute retention mechanism in RPLC

For intact mAb, $k = 100$ (34% ACN) and $k = 1$ (36% ACN)

For intact mAb, the “on” and “off” states correspond to a %ACN range of only 3.5% (37.9 - 34.4%)
Changing to more appropriate column hardware

After traveling only 5 mm, the mAb retention drops drastically.

→ Ultrashort columns can be used to significantly reduce the analysis times (<1 min)

Conventional column → Ultra-short columns

Ultra-short columns

0 cm 1 cm 2 cm 3 cm 4 cm 5 cm

Aspirin

K

φ

0 cm 1 cm 2 cm 3 cm 4 cm 5 cm

0 2 cm 3 cm 4 cm 5 cm

0 cm 1 cm 2 cm 3 cm 4 cm 5 cm

0 2 cm 3 cm 4 cm 5 cm

K

φ

0 cm 1 cm 2 cm 3 cm 4 cm 5 cm

0 2 cm 3 cm 4 cm 5 cm

K

φ

0 cm 1 cm 2 cm 3 cm 4 cm 5 cm

0 2 cm 3 cm 4 cm 5 cm

K

φ
Application to RPLC analysis of anti-COVID therapeutics

Sample preparation

Imdevimab
75 °C, 26–36 %B

Experimental parameters

Bioresolve RP mAb Polyphenyl
(50 x 2.1mm, 2.7µm, 450 Å)

Acquity UPLC H-Class system
Sample 1 mg/mL diluted in water
MPA 0.1%DFA in water
MPB 0.1% DFA in ACN
25-45%B
F = 0.6 mL/min
FLD detection

DOE method parameters

Gradient time: 4, 12 min
Temperature: 65, 90 °C

Source: Duivelshof et al. (2022) JPBA
From optimized conditions, virtually transferring to ultra-short columns

Important parameters when Transferring methods:
- Switch to low dwell and extra column volumes
- Change to ultrashort column parameters
- Change flow rate and gradient

Source: Duivelshof et al. (2022) JPBA

Software: Drylab, Chromsword, etc.
Extrapolation of bind-and–elute principles to other techniques

Are the current linear gradient profiles adequate?
Expanding on the protein specific elution behavior

Using new multi-isocratic gradients for infinite selectivity

Retention via Bind-Elute principle
Application of multi-isocratic gradients to complex protein formats

Application to:
- Bispecific antibodies
- Antibody-drug conjugates
- Full/Empty ratio for AAV’s

Further developments:
- Reduce analysis time
- Other chromatographic modes (HILIC/IEX)
- Affinity chromatography (FcRn or FcyRIIa)

Analysis of reduced Brentuximab Vedotin (Cysteine conjugated cytotoxic payload)

Conventional methods for FcRn and FcyRIIIa analysis

Affinity chromatography can help characterize the PK/PD effects of specific PTMs

Source: Bouvarel et al. (2022) J. Chrom. A.
Multi-isocratic segment methods for FcRn chromatography

- On-Off behavior due to pH dependent receptor binding
- Therefore, Multi-isocratic gradient possible using a pH step-gradient

\[C_e = C_i + \frac{C_f - C_i}{t_g} \times (t_R - t_0 - T_D) \]

- \(C_e \): elution composition
- \(T_g \): gradient time
- \(C_i \): initial composition
- \(C_f \): final composition
- \(T_R \): retention time
- \(T_0 \): column dead time
- \(T_D \): system dwell time

Oxidized IgG1 species

Source: Bouvarel et al. (2022) J. Chrom. A.
Multi isocratic segment methods in FcRn chromatography

Experimental conditions
Roche FcRn affinity (5 x 50 mm)
A: 20 mM MES + 140 mM NaCl at pH 5.5
B: 20 mM HEPES + 140 mM NaCl at pH 8.8
Flow: 500 µL.min\(^{-1}\)
FLD (280/340 nm)
Injection volume: 6 µL (0.5 mg.mL\(^{-1}\))

- Improvement of resolution between oxidized species due to the selection of the elution steps
- The space between peaks can be tuned by adjusting the length of the given isocratic segment

Source: Bouvarel et al. (2022) J. Chrom. A.
Multi isocratic segment methods in FcyRIIIa affinity chromatography

Experimental conditions

TSKgel FcR-IIIa-NPR (4.6 x 75 mm, 5 µm)

A: 50 mM sodium acetate + 150 mM NaCl (pH 6.5)

B: 50 mM citric acid + 150 mM NaCl (pH 4.0)

Flow: 1 mL.min⁻¹

FLD (280/340 nm)

Injection volume: 5 µL (1 mg.mL⁻¹)

Source: Bouvarel et al. (2022) J. Chrom. A.
To conclude and to remember!

Ultra-short columns can greatly reduce the analysis time

- Protein analytes follow an on-off retention mechanism
- Multiple chromatographic modes can be transferred to short column formats
- Retention modelling software enables confident method development

Multi-isocratic elution modes can be applied for affinity liquid chromatography

- The effect of PTMs on drug effector functions can be studied
- On-off retention mechanisms allow for improved resolution
- Potential combination of functional and physiochemical characterization setups
ACKNOWLEDGEMENTS

Prof. J.L. VEUTHEY
Dr D. GUILLARME
Dr V. D’ATRI
Dr T. BOUVAREL

Dr M. LAUBER
Dr S. FEKETE
Dr A. ZÖLDHEGYI
Dr C. STELLA
Dr J. CAMPERI