The Fine Art of Destruction for In-Depth Mass Spectrometry-Based Glycoproteomics:

Advances in Measurement and Data Analysis — Exploiting the Diagnostic Potential of Fragment Ions

Dr. Erdmann Rapp

Head of Bio/Process Analytics **Max Planck Institute** for Dynamics of Complex Technical Systems **Magdeburg, Germany**

May 25, 2022 | Lisbon, Portugal

E. Rapp | Glycoproteomics | May 25, 2022 | Lisbon, Portugal

Examples of Conflicting Masses in Glycoproteomics

NeuAc	291.0954	
2x Fucose	292.1158	
Δ	1.0204*	
NeuGc	307.0903	
Hexose + Fucose	308.1107	
Δ	1.0204*	
NeuGc + Fucose	453.1482	
NeuAc + Hexose	453.1482	
Δ	≈ 0	(1.63 x 10 ⁻⁶)
Carbamidomethylation	57.0215	
Glycine	57.0215	
Δ	0	

Fucose + Carbamidomethyl./Glycine	203.0794	
HexNAc	203.0794	
Δ	≈ 0	(1.11 x 10 ⁻⁷)
Fucose + Oxidation on Peptide/F \rightarrow Y	162.0528	
Hex	162.0528	
Δ	≈ 0	(1.00 x 10 ⁻⁶)
HexNAc + Oxidation on Peptide/F→Y	219.0743	
Hex + Carbamidomethyl./Glycine	219.0743	
Δ	≈ 0	(8.89 x 10 ⁻⁷)

Masses and mass differences in Da.

*conflicts for instance with N deamidation (Δ 0.985 Da)

Generic Glycoproteomics Workflow

N- and **O-Glycoproteomics** Workflow

glyXera's High Performance Glycoanalysis System glyXboxCE

glyXboxCE is based on xCGE-LIF

⇒ Allowing to conduct glycoanalysis from high-throughput to in-depth mode

Running glyXboxCE in Real High-Throughput Mode

glyXboxCE is based on xCGE-LIF

Standard Glycoprofiling \Rightarrow Database matching for structural assignment

Separation of up to 4700 samples in 48 hours !!! 🗢 Automated Data Processing & Structural Assignment !!!

Running glyXboxCE in Real In-Depth Mode

Time (MTU")

N-Glycans: Full Structural Elucidation by glyXboxCE

Example: Human IgG *N*-Glycans (*Total N-Glycome*)

In-Depth *N*-Glycoprofiling (incl. Exocglycosidase Sequencing)

Normalized Migration Time Units (MTU")

Cajic, S., et al. (2021). "Capillary (Gel) Electrophoresis-Based Methods for Immunoglobulin (G) Glycosylation Analysis." Experientia supplementum (2012) 112: 137-172.

TPH, total peak height

N-Glycans: Full Structural Elucidation by glyXboxCE

Example: Human Fibrinogen *N***-Glycans**

TPH, total peak height

HCD Fragmentation of Glycopeptides

HCD Fragmentation of Glycopeptides

Conserved Fragmentation Pattern

Increased confidence in the correct annotation of the peptide mass of *N*-glycopeptides

→ Relevance: Proteinase K digest, peptide mass cannot be predicted *a priori*

E. Rapp | Glycoproteomics | May 25, 2022 | Lisbon, Portugal

N-Glycopeptide Oxonium Ion Pattern

Bar Graph: Relative Oxonium Ion Abundance

Oxonium Ions: Glycosylation Sites

N-Glycopeptide Oxonium Ion Pattern

V

LTF - Lactotransferrin

Oxonium Ions: Peptide Backbone

N-Glycopeptide Oxonium Ion Pattern

Independent of the peptide backbone

Oxonium Ions: Charge State of the Precursor Ion

N-Glycopeptide Oxonium Ion Pattern

Independent of the charge state of the precursor ion

N-Glycopeptide Oxonium Ion Pattern

- Independent of the glycosylation site
- Independent of the peptide backbone
- Independent of the charge state of the precursor ion
- Identical for the same glycan moiety

Oxoviameicte pattle roxoinactivi oeffectochaeastreristicsl gfytranglyfcamratoierty

Oxonium Ions: Core vs Antenna Fucosylation

N-Glycopeptide Oxonium Ion Pattern

Oxonium Ions: Bisecting GIcNAc vs Antenna GIcNAc

N-Glycopeptide Oxonium Ion Pattern

EIC, extracted ion chromatogram

Oxonium Ions: Bisecting GIcNAc vs Antenna GIcNAc

N-Glycopeptide Oxonium Ion Pattern

Oxonium Ions: Bisecting GIcNAc vs Antenna GIcNAc

N-Glycopeptide Oxonium Ion Pattern

Oxonium Ions: High-Mannose-Type N-Glycopeptides

N-Glycopeptide Oxonium Ion Pattern

HCD.low and HCD.step: Hex
oxonium ion abundance correlates with number of mannoses

Hex oxonium ions normally absent or hardly present (< 0.5%) with complex-type N-glycopeptides</p>

Oxonium Ions: Hybrid-Type *N***-Glycopeptides**

N-Glycopeptide Oxonium Ion Pattern

Oxonium Ions: Hybrid-Type N-Glycopeptides

Hex₂ •• only present with high-mannose- and hybrid-type N-glycopeptides

Oxonium Ions: N- vs O-Glycopeptides

Differentiation based on Oxonium Ion Pattern

m/z

50

Oxonium Ions: N- vs O-Glycopeptides

Hoffmann et al. Proteomics, (2018). [2] Pioch et al., Anal Chem, (2018). & Kawahara et al., Nature Methods, (2021)

E. Rapp | Glycoproteomics | May 25, 2022 | Lisbon, Portugal

[1]

ANALYSIS

nature methods

OPEN Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis

Fig. 1 | **Study overview. a**, Two glycoproteomics data files of human serum (Files A and B) were generated and shared with participants. **b**, Participants comprising both developers (orange) and users (blue, team identifiers indicated) employed diverse search engines to complete the study. **c**, Teams returned a common reporting template capturing details of the applied search strategy including key search settings (SS1-SS13) and search output (SO1-SO9, Table 1) and their identified glycopeptides. **d**, Complementary performance tests (N1-N6, O1-O5; Table 2) were used to comprehensively evaluate the ability of teams to identify N- and O-glycopeptides. **e**, The performance profiles were used to score and rank the developers and users separately. Diverse team-wide and search engine-centric (Byonic-focused) approaches were employed to identify performance-associated variables and high-performance search strategies.

OPEN Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis

...glyXtoolMS... identified as high-performance N- and O-glycoproteomics software, respectively.

nature methods

"Overall, Protein Prospector (team 2, overall score 0.682), Byonic (team 4, 0.676) and GlycoPAT (team 8, 0.647) were found to be high-performance software solutions for **N-glycoproteomics**. Notably, our scoring did not separate these three developers by any substantial margin, but their overall performance was slightly higher than that of IQ-GPA (team 1, 0.621) and **glyXtoolMS** (team 3, **0.580**) and substantially higher than that of the other software (score range 0.296–0.366)"

⇒ <u>5th Place !!!</u>

1st Place !!!

"Conversely, IQ-GPA (team 1) and glyXtoolMS (team 3) were the best performing software in tests scoring the O-glycan compositions (O1) and O-glycoproteome coverage (O3), respectively. Overall, Protein Prospector (team 2, overall score 0.613) and glyXtoolMS (team 3, 0.522) were found to be high-performance software for O-glycoproteomics"

Pioch et al., Anal Chem, (2018). Kawahara et al., Nature Methods, (2021) &

Acknowledgement

- Prof. Udo Reichl
- Dr. Marcus Hoffmann
- Markus Pioch
- Alexander Pralow

Funding:

The Concert of Dolichol-Based Glycosylation: From Molecules to Disease Models

Research Unit FOR2509 for2509.de

