

Considerations for the Application of Multi-Attribute-Method (MAM) by Mass Spectrometry for QC Release and Stability Testing of Biopharmaceuticals

Thomas Pohl, Novartis Pharma AG - Annick Gervais, UCB S.A. - Eef Dirksen, Byondis B.V.

OUTLINE

Considerations for the Application of Multi-Attribute-Method (MAM) by Mass Spectrometry for QC Release and Stability Testing of Biopharmaceuticals

- EFPIA topic team "MAM as QC tool"
- MAM by LC-MS peptide mapping as QC tool
- **enefits and challenges**
- Regulatory pathways
- Supporting elements

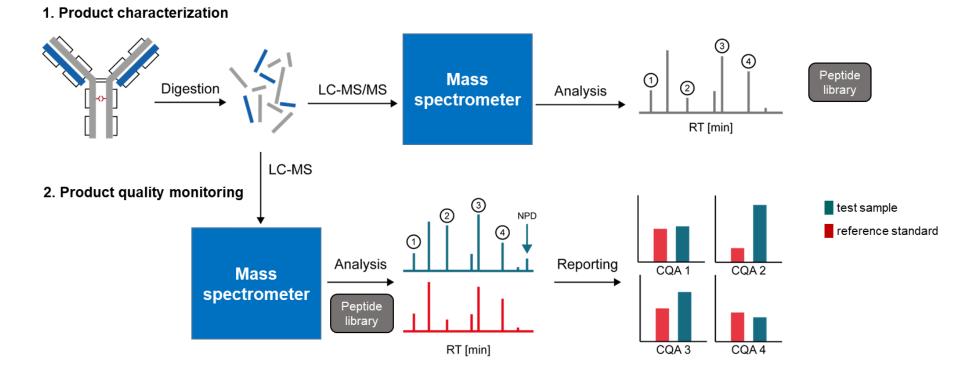
EFPIA TOPIC TEAM "MAM AS QC TOOL"

Why this initiative?

- Multi-attribute-method (MAM) by mass spectrometry is well established across the industry in non-GMP environments for product and process characterization purposes
- The majority of pharmaceutical companies and many instrument providers are currently working on the extension of MAM to QC labs
- The use of MAM for lot release and stability testing according to GMP is not well established across the industry due to:
 - ongoing evolution and alignment of best practices
 - complexity of method (sample preparation, instrumentation, data analysis)
 - limited experience with filing of MAM as a QC tool
 - regulatory unfamiliarity with MAM as QC tool

Mission and vision

- Team of 25 representatives from 17 pharmaceutical companies
- Founded in March 2021 under the umbrella of EFPIA MQEG¹ to promote


Global acceptance of MAM addressing multiple product quality attributes in a single method for QC release and stability, replacing conventional QC methods (e.g. purity / identity)

- \rightarrow Share and align on best practices across the industry
- → Promote & encourage regulatory filing of MAM for lot release and stability testing under GMP
- \rightarrow Reduce regulatory unfamiliarity and obtain acceptance by health authorities

TECHNICAL CONTEXT

Prototypical MAM by LC-MS peptide mapping workflow

Targeted monitoring of critical quality attributes + 'New Peak Detection' (NPD) are required to establish MAM by LC-MS peptide mapping as purity assay in a QC environment.

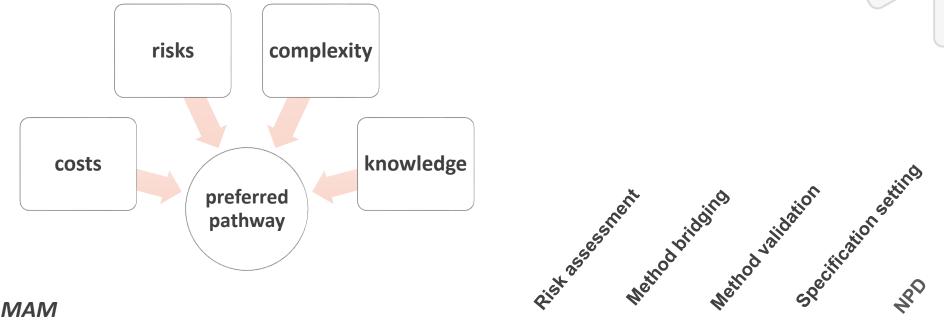
TECHNICAL CONTEXT

MAM by LC-MS peptide mapping has the proven ¹ capability to replace multiple conventional HPLC / CE-based QC methods

Quality Attribute	Conventional method	Replacement method	
Charge variants	IEX, cIEF, CZE		
Fragments	rCE-SDS	MAM by LC-MS peptide	
Glycans	2-AB HILIC, HPAEC PAD	mapping	
Oxidation	RPC, HIC, peptide mapping LC-UV		
Identity	ELISA, peptide mapping LC-UV		

- The technology is well-advanced with instruments and software solutions being developed from several vendors allowing routine use in a GMP environment.
- Implementation of MAM is supported by established and draft guidelines (e.g. ICH Q2, ICH Q6B, ICH Q14) and will facilitate advanced control strategies in line with ICH Q8.

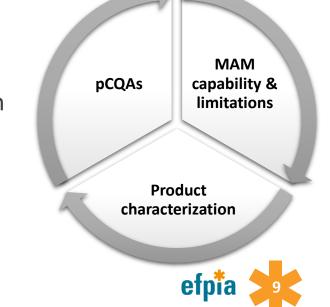
Improved quality control testing and shortened development timelines through enhanced product and process understanding


- Provides quantitative information on individual site-specific CQAs therefore enabling more specific control of the safety and efficacy of the drug
- Increase speed by leveraging MAM as platform method with a potential for automation
- De-risks accelerated development by retrospective assessment of newly identified (p)CQAs using previous data sets

MAM is so far not widely accepted for lot release and stability testing under GMP due to regulatory unfamiliarity & potential business risks

- Limited experience with filing MAM as QC method, replacing conventional methods
- Diverse and unclear regulatory landscape as potential business risks
- Increased effort and risk by parallel testing using MAM & conventional methods
- *Limited experience to validate New Peak Detection (NPD) and set appropriate specifications*

REGULATORY PATHWAYS & SUPPORTING ELEMENTS

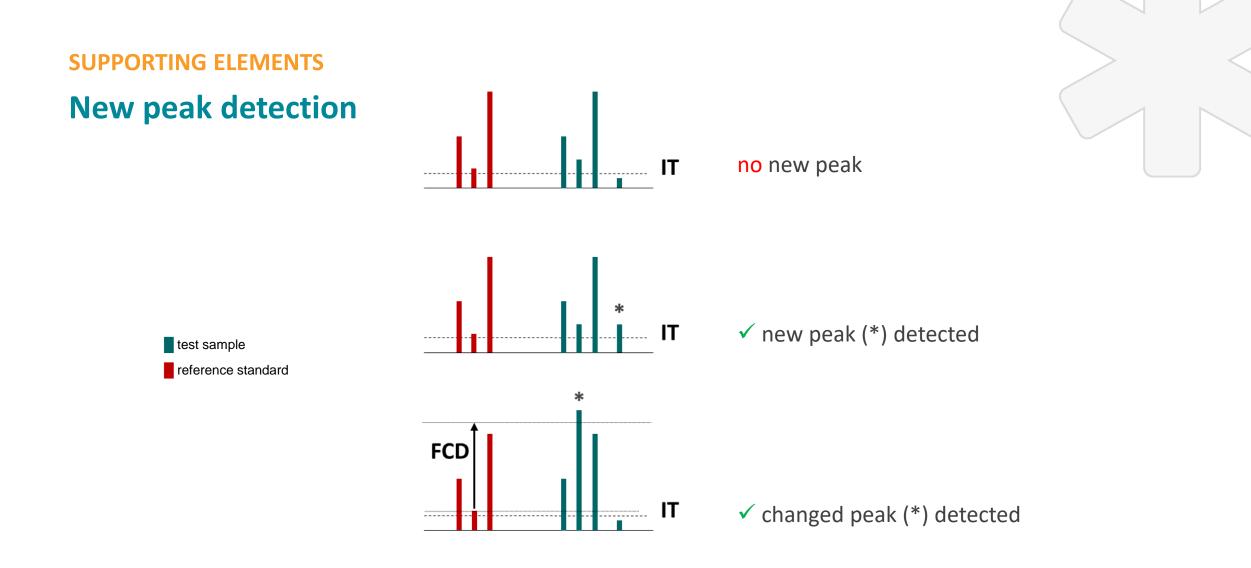

Introduction of MAM

Prior to FIH studies – instead of conventional methods	yes	no	yes	yes	yes
After FIH / prior to registration – in addition to conventional methods	no	no	yes	yes	no
During development / as LCM activity - replace conventional methods		yes	yes	yes	yes

Risk assessment

- "Evaluate the capacity and performance of MAM in the context of the CQAs of the candidate product and its overall control strategy"¹, which requires thorough understanding of the
 - 1. capabilities & limitations of MAM by LC-MS peptide mapping
 - 2. pCQAs of the product obtained by structure elucidation and forced degradation studies
- typical limitations of MAMs by LC-MS peptide mapping include
 - 1. clipping site (degradation) = clipping site (sample preparation)
 - 2. peptide fragments are too small to be retained on the LC column
 - 3. bottom-up approach: modification on peptide vs intact level
 - 4. potential risk of sample preparation-induced artefacts

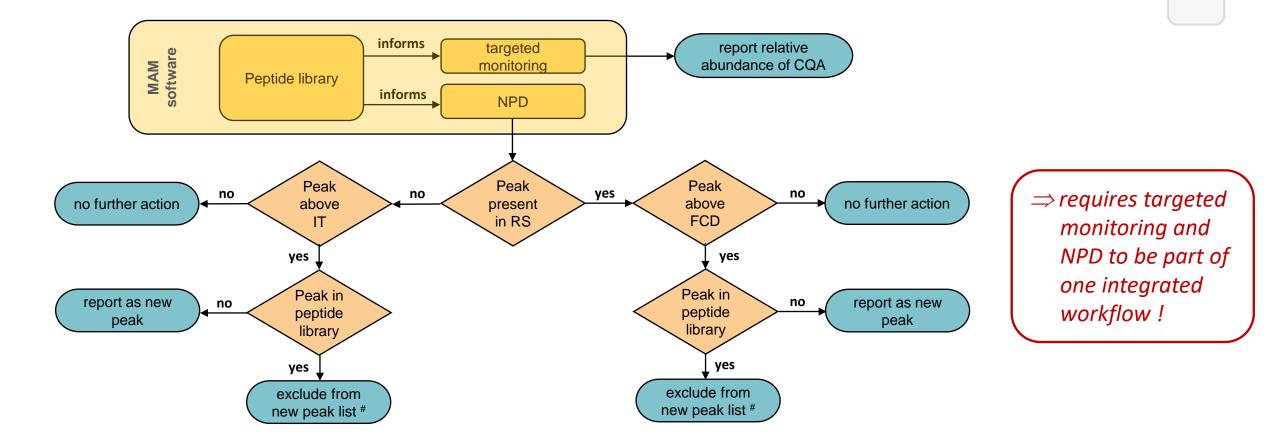
- bridging data package as for any other conventional method, i.e. analysis of
 - clinical batches \rightarrow link to clinical experience / safety and efficacy
 - stability samples incl. forcibly-degraded samples \rightarrow coverage of all relevant pCQAs
 - IPC samples \rightarrow absence of matrix interferences (if relevant)
- reportable results for MAM and conventional methods will be different
 - not meaningful to compare absolute values, only trends and rate of evolution of the CQA during stability (long term, accelerated conditions) should be compared
- leverage the performance characteristics as defined in the Analytical Target Profile (ATP)



SUPPORTING ELEMENTS

Method validation

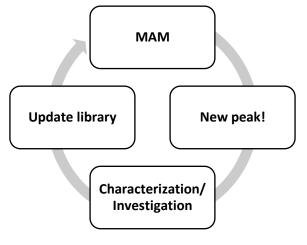
- targeted monitoring according to ICH Q2(R1) quantitative testing for impurities
 - accuracy, precision (repeatability, intermediate precision), specificity, quantitation limit, linearity and range
- NPD parameters (if applicable)
 - fold-change & intensity threshold, mass & retention time windows
- *leverage MAM platform in line with ICH Q14, i.e. consider to apply*
 - platform robustness data to streamline product specific validation
 - prior knowledge e.g. same peptide / same modification
 - risk-based approaches e.g. similar peptides / same modification
 - performance requirements as defined in the ATP



IT: intensity threshold, minimum signal threshold FCD: fold-change detection threshold

SUPPORTING ELEMENTS

New peak detection


- RS: product specific reference standard
- IT: intensity threshold, minimum signal threshold
- FCD: fold-change detection threshold
- # selected peaks / product variants may be trended to support internal process consistency monitoring

SUPPORTING ELEMENTS

Specification setting

- *for the targeted monitoring according to ICH Q6B as for conventional methods*
 - specification limits only for CQAs
 - limits informed by clinical experience, criticality assessment of quality attributes and performance characteristics of the MAM
- for NPD in a stage-appropriate manner as library and NPD parameters are expected to evolve
 clinical development
 - lower warning limit \rightarrow characterize / update library
 - higher action limit \rightarrow OOS investigation <u>commercial</u>
 - detection of unknown peak above validated NPD thresholds \rightarrow OOS investigation

- Replacement of conventional methods with MAM by LC-MS enables improved CQA-centric quality control testing in line with QbD principles
- Depending on the regulatory pathway for the introduction of MAM in a QC lab, different elements such as risk assessment, method bridging and NPD will be required
- The development and validation of a robust NPD workflow is considered a pre-requisite for the use of MAM by LC-MS as a purity assay and the successful replacement of conventional methods
- Method validation and specification setting for the target monitoring should follow established regulatory guidelines, such as ICH Q2 / ICH Q6B and will benefit from upcoming ICH Q14
- Introduction of MAM by LC-MS as a QC method prior to FIH studies is expected to reduce complexity but requires frontloading in terms of early product characterization studies

ACKNOWLEDGEMENT

Current members of the EFPIA topic team «MAM as a QC tool»

Name	Company	Name	Company
Nicholas LALIBERTE	Abbvie	Eef DIRKSEN	Byondis
Andrew LENNARD	Amgen	Tomas O'RIORDAN	Eli Lilly
Jette WYPYCH	Amgen	Justin SHEARER	GSK
Ben NIU	Astra Zeneca	Li CAO	GSK
Wei XU	Astra Zeneca	David SPENCER	IPSEN
Simone GREVEN	BAYER	Valerio D'ALESSIO	MERCK
Juliet PADDEN	BAYER	John HIGGINS	MSD
Linda YI	BIOGEN	Thomas POHL (lead)	Novartis
Xue (Shelly) Ll	BMS	Karoline BECHTOLD-PETERS	Novartis
Yan YIN	BMS	Mark HILLARD	Pfizer
Peter HAPPERSBERGER	Boehringer Ingelheim	Dietmar REUSCH	Roche
Christopher LÖSSNER	Boehringer Ingelheim	Annick GERVAIS (co-lead)	UCB
		Will BURKITT	UCB

