

Protein quality and binding affinities by Affinity CE and 2-dimensional separations

Hermann Wätzig, Christin Scheller, Finja Krebs, Mais Olabi, Ratih Ratih, Rebecca Wiesner, Robert Minkner, Holger Zagst, Matthias Stein, Imke Oltmann-Norden Institute of Medicinal and Pharmaceutical Chemistry, University of Braunschweig, Germany

Correspondence: h.waetzig@tu-braunschweig.de

Technische

Protein quality and binding affinities by Affinity CE and 2dimensional separations

Importance of protein classification

- **2-dimensional separations**
- Case study: isoelectric points of SARS-CoV-2 and ACE2 proteins
- Case study: collagen
- Affinity CE (ACE)
- **Uncertainty of Ligand Binding Assays**

Conclusions and outlook

Physicochemical properties of the SARS-CoV-2 for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control Christin Scheller, Finja Krebs, Robert Minkner, Isabel Astner, Maria Gil-Moles, Hermann Wätzig Electrophoresis 2020, 41, 1137-1151; http://dx.doi.org/10.1002/elps.202000121

A very beautiful therapeutic protein

TimVickers at English Wikipedia / Public domain

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 3

Physicochemical Properties of Proteins

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 4

Physicochemical Properties of Proteins

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 5

Physicochemical Properties of Proteins

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 6

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 7

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 8

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 9

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 10

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 11

Horn, Kapelner, Obermeyer, Polymers **2019**, 11, 578; doi:10.3390/polym11040578 and [34, 35] cited therein

Horn, Kapelner, Obermeyer, Polymers **2019**, 11, 578; doi:10.3390/polym11040578 and [34, 35] cited therein

Kim, Sureka, Kayitmazer, Wang, Swan, Olsen, Biomacromolecules 2020, 21, 3026–3037

Mixture of Model Proteins, 2nd Dimension CE-SDS Patent WO 2018/127515 A1

Sf9-Cytosol (transfected)

Sf9-Cytosol (transfected)

Overlay of two electropherograms from different samples.

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 16

Sf9-Cytosol (transfected)

Overlay of two electropherograms from different samples. Blue circle marks protein of interest

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 17

Example II – Sample from Biotechnological Process

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 18

Example II – Samples from Biotechnical Process: Both Separations Superimposed for Comparision

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 19

Outlook

- Exploration of further possible applications, e.g. diagnostics, process analytics, impurity analysis, etc.
- Determination of relevant method parameters
 - Linearity & LOD
 - Reproducibility
 - Accuracy
- Possibilities for method adjustments

VVPPP

Electrophoresis 2020, 41, 1137-1151

Germany

Table 1: Molecular Weight (MW), isoelectric Point (pl) and grand average of hydropathicity (GRAVY) of the SARS-CoV-1 and SARS-CoV-2 proteins predicted by ProtParam [54], including the corresponding sequence identifier [48]

Christin Scheller Review **Finja Krebs** Robert Minkner Physicochemical propertie Isabel Astner Maria Gil-Moles for drug targeting, virus in Hermann Wätzig 回 and attenuation, vaccine f Institute of Medicinal and and quality control Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, The material properties of the severe acute respira CoV-2) and its proteins are discussed. We review the ity, isoelectric point, buoyant density and centrifuga Received May 8, 2020 temperature, UV light, gamma radiation, and susc Revised May 22, 2020 including solvents and detergents. Possible inactiv Accepted May 22, 2020 conditions are given including suitable buffers and methods. This information supports vaccine develor authorities during vaccine approval and is certainly r hygienics. Several instructive tables are given, inclu dropathicity (GRAVY) of SARS-CoV-1 and -2 prote SARS-CoV-2 are similar in many regards, so inforn unusually stable, but sensitive at their lipophilic me small differences can have strong effects, for examp 1 . 11 . 1

Virus			MW		GRAV
	Protein	UniProt-ID	[kDa]	pl	Y
Vc	Replicase polyprotein 1a	P0C6U8 · R1A_CVHSA	486.373	5.91	-0.020
	Replicase polyprotein 1ab	P0C6X7 · R1AB_CVHSA	790.248	6.19	-0.071
	Spike glycoprotein	P59594 · SPIKE_CVHSA	139.125	5.56	-0.045
	Nucleoprotein	P59595 · NCAP_CVHSA	46.025	10.11	-1.027
	Protein 3a	P59632 · AP3A_CVHSA	30.903	5.75	0.239
	Protein 7a	P59635 · NS7A_CVHSA	13.941	8.24	0.218
	Envelope small membrane protein	P59637 · VEMP_CVHSA	8.361	6.01	1.141
ů v	Membrane protein	P59596 · VME1_CVHSA	25.061	9.63	0.417
AR 6	Nonstructural protein 3b	P59633 · NS3B_CVHSA	17.750	10.82	0.099
ſS	Nonstructural protein 6	P59634 · NS6_CVHSA	7.527	4.64	0.297
	Protein 9b	P59636 · ORF9B_CVHSA	10.802	4.90	-0.122
	Protein nonstructural 7b	Q7TFA1 · NS7B_CVHSA	5.302	3.77	1.414
	Nonstructural protein 8b	Q80H93 · NS8B_CVHSA	9.560	9.45	-0.029
	Nonstructural protein 8a	Q7TFA0 · NS8A_CVHSA	4.327	8.30	0.644
	Uncharacterized protein				
	14	Q7TLC7 · Y14_CVHSA	7.852	6.25	0.310
	Replicase polyprotein 1a	P0DTC1 · R1A_SARS2	489.989	6.04	-0.023
	Spike glycoprotein	P0DTC2 · SPIKE_SARS2	141.178	6.24	-0.079
	Replicase polyprotein 1ab	P0DTD1 · R1AB_SARS2	794.058	6.32	-0.070
	Protein 3a	P0DTC3 · AP3A_SARS2	31.123	5.55	0.275
	Membrane protein	P0DTC5 · VME1_SARS2	25.147	9.51	0.446
N	Protein 7a	P0DTC7 · NS7A_SARS2	13.744	8.23	0.318
ž	Nucleoprotein	P0DTC9 · NCAP_SARS2	45.626	10.07	-0.971
ss-co	Envelope small membrane protein	P0DTC4 · VEMP_SARS2	8.365	8.57	1.128
SA	Nonstructural protein 6	P0DTC6 · NS6_SARS2	7.273	4.60	0.233
U,	Protein 9b	P0DTD2 · ORF9B_SARS2	10.797	6.56	-0.085
	Nonstructural protein 8	P0DTC8 · NS8_SARS2	13.831	5.42	0.219
	Uncharacterized protein				
	14	P0DTD3 · Y14_SARS2	8.050	5.79	0.603
	Protein nonstructural 7b	P0DTD8 · NS7B_SARS2	5.180	4.17	1.449
	A0A663DJA2 · A0	A663DJA2_SARS2	4.449	7.93	0.637

cIEF with SARS-CoV-2 proteins – RBD Fc (pl 8.55)

SARS RBD Fc

cIEF with SARS-CoV-2 proteins – hACE2 His (pl 5.6)

hACE2 His

Institut für Medizinische und Pharmazeutische Chemie

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 24

Collagen: main constituent of connective tissues

- skin
- bones
- tendons
- etc.

Human skin, from Klafubra, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=5409304

Dr. Imke Oltmann-Norden

d		
N1	N2	N3
Gly	Pro _{c=0}	Нур
Pro _{c=0}	Нур	^{∺–N} Gly
Нур	^{``∺–ℕ} Gly	o=cPro
Gly ^{N-H}	Pro	Нур
C1	C2	C3

Source: M.D. Shoulders and R.T. Raines "Collagen Structure and Stability" Annu. Rev. Biochem. 2009; 78:929-958

© Elsevier. Meisenberg & Simmons: Principles of Medical Biochemistry 2e - www.studentconsult.com

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 26

Dr. Imke Oltmann-Norden

a		
N1	N2	N3
Gly	Pro _{c=0}	Нур
Pro _{c=0.}	Нур	^{H–N} Gly
Нур	^{H–N} Gly	o=cPro
Gly ^{N-H····}	Pro	Нур
C1	C2	C3

Source: M.D. Shoulders and R.T. Raines "Collagen Structure and Stability" Annu. Rev. Biochem. 2009; 78:929-958

© Elsevier. Meisenberg & Simmons: Principles of Medical Biochemistry 2e - www.studentconsult.com

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 27

Dr. Imke Oltmann-Norden

N2	N3
Pro _{c=0}	Нур
Нур	^{∺–N} Gly
^{``∺–ℕ} Gly	o=cPro
Pro	Нур
C2	C3
	N2 Pro _{C=0} Hyp ^{*H-N} Gly Pro C2

Source: M.D. Shoulders and R.T. Raines "Collagen Structure and Stability" Annu. Rev. Biochem. 2009; 78:929-958

© Elsevier. Meisenberg & Simmons: Principles of Medical Biochemistry 2e - www.studentconsult.com

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 28

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 29

Christin Scheller

Dr. Imke Oltmann-Norden

a		
N1	N2	N3
Gly	Pro _{c=0}	Нур
Pro _{c=0}	Нур	^{H–N} Gly
Нур	^{∵н–ℕ} Gly	o=cPro
Gly ^{N-H}	Pro	Нур
C1	C2	C3

Source: M.D. Shoulders and R.T. Raines "Collagen Structure and Stability" Annu. Rev. Biochem. 2009; 78:929-958

© Elsevier. Meisenberg & Simmons: Principles of Medical Biochemistry 2e - www.studentconsult.com

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 30

How to prepare a suspension of collagen

Grinding using the dual centrifuge Zentrimix 380 R (Hettich)

- Grinding body: ZY-P Mahlkörper SiLibeads® (zirkonium oxide, stabilized by yttrium), 0,8-1,0 mm
- Weight: 30% grinding body
 ² 2,2g
- Temperature centrifuge: cooling to -20°C, real temperature during grinding process: between -9°C and -14°C
- Grinding: 1000 rpm for 1min, then freezing (N₂(I)), then repetitive grinding (four times altogether)

https://www.hettichlab.com/downloadcenter/Products/Catalogs_Brochures/HETTICH/Liposomen_Methode.pdf

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 32

ACE in suspension

Christin Scheller

LPA ID 75 μm (Polymicro Technologies), total length: 32.5 cm; effective: 24.0 cm Phosphate buffer 12.5 mM pH 7.4 (+ various amounts of collagen particles) HSA 0.2 mg/ml + potassium hydrogen phthalate 40 μg/ml as mobility marker

0.6 W (limits: -18 kV; 50 μA)

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 33

ACE in suspension

Christin Scheller

LPA ID 75 μm (Polymicro Technologies), total length: 32.5 cm; effective: 24.0 cm Phosphate buffer 12.5 mM pH 7.4 (+ various amounts of collagen particles) HSA 0.2 mg/ml + potassium hydrogen phthalate 40 μg/ml as mobility marker

0.6 W (limits: -18 kV; 50 μA)

Working at constant power P = U * I

Experimental design and measurement uncertainty in ligand binding studies by affinity capillary electrophoresis

Matthias Stein, Rob Haselberg, Mona Mozafari-Torshizi, Hermann Wätzig

Electrophoresis 2019 Apr;40(7):1041-1054. doi: 10.1002/elps.201800450

Uncertainty in Ligand Binding Assay Data

Christian Kramer et al. dx.doi.org/10.1021/jm300131x J. Med. Chem. 2012, 55, 5165–5173

Journal of Medicinal Chemistry

Quite often more than 2.5 log units difference in pK data

Article

pubs.acs.org/jmc

This means: one binding constant is by more than a factor of 300 greater than the other!

Figure 5. Plot of all pairs of measured values (curated dataset 1). Lines indicate the 2.5 log unit border for removing unreliable pairs of measurement (leaving curated dataset 2).

The five-parameter logistic model [3,4] and its Parameters in ~

Total binding (T) = specific binding (S) + non-specific binding (N)

 [3] Paul G. Gottschalk, John R. Dunn, The five-parameter logistic: A characterization and comparison with the four-parameter logistic, Analytical Biochemistry, Volume 343, Issue 1, 2005, Pages 54-65
 [4] https://www.graphpad.com/support/faq/asymmetrical-five-parameter-logistic-dose-responsecurves/

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 37

Calculation of the best estimate for Theta $\widehat{\boldsymbol{\theta}}$ in RBA

[5] <u>Radioligand binding methods: practical quide and tips</u>, D. B. Bylund and M. L. Toews, American Journal of Physiology-Lung Cellular and Molecular Physiology 1993 265:5, L421-L429 [6] https://www.originlab.com/doc/Origin-Help/Nonlinear-Curve-Fit

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 38

MC Simulation

[7] GUM sup1 https://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 39

Influence of the Experimentals Designs on the Precision and Trueness of h

[7] GUM sup1 https://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 40

Preliminary Conclusion

- Both the precision and the trueness are depending strongly on the Measurement Design
- In this case the strongest effects could be observed for K
- The impact differs between the BPs
 Ds3 was best for h and worst for K

Overall conclusions and outlook: details

Time [min]

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 42

Overall conclusions and outlook: details and general concepts

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 43

Overall conclusions and outlook: details and general concepts

8,925

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 44

Overall conclusions and outlook: details and general concepts

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 45

Thank you very much!

Hermann Wätzig, Imke Oltmann-Norden, Holger Zagst, Christin Scheller, Rebecca Wiesner, Matthias Stein, Mais Olabi, Finja Krebs; and Ratih Ratih, Kai-Jorrit Maul-Köhler, Robert Minkner

2 November 2020 | Wätzig, H. et al. | Protein quality and binding affinities by ACE and 2-D separations | Page 46

Thank you very much!

Hermann Wätzig, Imke Oltmann-Norden, Holger Zagst, Christin Scheller, Rebecca Wiesner, Matthias Stein, Mais Olabi, Finja Krebs; and Ratih Ratih, Kai-Jorrit Maul-Köhler, Robert Minkner

