

Tapping into new applications using automated protein mass spectrometry

Dr. Hans R. Völger Roche Pharma Research and Early Development (pRED) Roche Innovation Center Munich

- Introduction
- Overview of automated protein mass spectrometry (MS)
- Automation of intact protein MS for screening workflows
- Outlook / next steps
- Summary and acknowledgements

Advancing biotherapeutics

Fuelling the pRED pipeline with complex protein formats

Advancing biotherapeutics

Fuelling the pRED pipeline with complex protein formats

Advancing biotherapeutics

Fuelling the pRED pipeline with complex protein formats

Roche

Benefit of hitting more than one target

Binding two targets can induce *T*-cell activation against cancer cells.

Complex proteins can address new modes of action.

Affinity-avidity profile and mode of action is influenced by protein format.

Why screen for binder and format combinations?

Mode of action even of one single binder can be significantly altered by the protein format used.

Screening binder and format combinations

10 binders target A x **10** binders target B x **4** protein formats = **400** different bispecific protein samples providing a variety of main product masses and covering a broad range of side product profiles

Screening binder and format combinations

This is the workflow we want to support with protein mass spectrometry (ID, side products).

10 binders target A x **10** binders target B x **4** protein formats = **400** different bispecific protein samples providing a variety of main product masses and covering a broad range of side product profiles

- Introduction
- Overview of automated protein mass spectrometry (MS)
- Automation of intact protein MS for screening workflows
- Outlook / next steps
- Summary and acknowledgements

Leaving details aside ...

Leaving details aside, but not for too long.

Q1: How much or how little analyst involvement do we need for 400 different protein samples?

Q2: Is there a suitable IT landscape in place to support the associated data workflow?

Samples

Sample preparation

LC-MS experiment

Data evaluation

Reports

- Introduction
- Overview of automated protein mass spectrometry (MS)
- Automation of intact protein MS for screening workflows
- Outlook / next steps
- Summary and acknowledgements

Get started with ...

Automating sample preparation

Automating sample preparation

Sample data must be retrieved and stored throughout sample preparation.

Automating sample preparation

Sample data must be retrieved and stored throughout sample preparation.

Roche

Automation in mass spectrometry: sample-to-report

Dive into data acquisition ...

Automating LC-MS experiment setup

Establish format-specific ESI parameters for suitable sample ionization.

Top/bottom: same sample

lon source voltages differ

Automating LC-MS experiment setup

Format-specific ESI parameters may be hard to find (no one-size-fits-all).

Top/bottom: same sample

lon source voltages differ using values as on previous slide

Roche

Automation in mass spectrometry: sample-to-report

Deal with the data deluge.

Introducing Roche's virtual MS analyst ...

File name contains sample ID

retention time \rightarrow

Start data evaluation as soon as experiment is finished.

Introducing Roche's virtual MS analyst ...

Identify TIC peaks.

Introducing Roche's virtual MS analyst ...

Roche

Combine m/z spectra of TIC peaks.

Introducing Roche's virtual MS analyst ...

LC Peak	Mass	Abundance
1 (blue)	23338	20
1	23940	15
2 (red)	145624	100
2	145752	25
2	98345	20

Deconvolute and get a list of masses with their abundance (by ion counts).

Without annotations an automated ID assessment is impossible.

LC Peak	Mass	Abundance
1 (blue)	23338	20
1	23940	15
2 (red)	145624	100
2	145752	25
2	98345	20

Does any of these masses confirm ID?

Giving the virtual MS analyst some human experience

Automating MS data evaluation *Adding human MS analyst's reasoning*

Knowing the desired main product enables deducing potential side products.

retention time \rightarrow

Adding human MS analyst's reasoning

Educated virtual MS analyst provides annotations for observed masses.

File name contains sample ID

LC Peak	Mass	Abundance	Annotation
1 (blue)	23338	20	L1
1	23940	15	L2
2 (red)	145624	100	L1 H1 H2 L2
2	145752	25	+ Lysine
2	98345	20	H1 H2

Result annotations enable condensed reports including consistency checks.

Sample Plate MTP96-20180302AA		LC Peak	Mass	Abundance	Annotation
	Does MS data confirm the sample ID?	1	23338	20	L1
	Are side products high or low abundant?	1	23940	15	L2
nfirmed Protein IDs		2	145624	100	L1 H1 H2 L2
sample +01 mass confirmed rating good sample +02 mass confirmed rating good sample +04 mass not confirmed rating good sample +04 mass confirmed rating good		2	145752	25 L1 H1	H2 L2
11 sample+6-6 mass confirmed rating good 11 sample+67 mass confirmed rating good 12 sample+69 mass confirmed rating good 12 sample+69 mass confirmed rating good 12 sample+10 mass confirmed rating good 12 sample+11 mass confirmed rating good		2	98345	20	
Doz sample +12 mass confirmed rating good Eoz sample +14 mass confirmed rating good Foz sample +14 mass confirmed rating good Goz sample +15 mass confirmed rating good Hoz sample +16 mass confirmed rating good Hoz sample +16 mass confirmed rating good Bo3 sample +119 mass confirmed rating good DO3 sample +119 mass confirmed rating good					
et celtera					

Results can easily be traced back to underlying MS data for analyst review.

Result annotations are rapidly reviewed and finalized for export to ELN.

LC Peak	Mass	Abundance	Annotation
1	23338	20	L1
1	23940	15	L2
2	145624	100	L1 H1 H2 L2
2	145752	25	+ Lysine
2	98345	20	H1 H2

... and that's it.

... for protein binder and format screening workflows: **done**.

... for protein binder and format screening workflows: **done**.

Roch

... for protein binder and format screening workflows: **done**.

Roct

- Introduction
- Overview of automated protein mass spectrometry (MS)
- Automation of intact protein MS for screening workflows
- Outlook / next steps
- Summary and acknowledgements

Queue of automation workflow candidates

Beyond support of binder and protein format screening

Extensions and enhancements of the current workflow:

- Cell line and early bioprocess development
- Improvements for protein-aware annotation engine
- CDR-focussed peptide maps (developability screening)

- Introduction
- Overview of automated protein mass spectrometry (MS)
- Automation of intact protein MS for screening workflows
- Outlook / next steps / work in progress
- Summary and acknowledgements

Concluding remarks

- Automation of intact protein LC-MS for binder and format screening is feasable.
- Protein information database is essential for tuning sample preparation, MS data acquisition setup as well as enabling automated annotation of result masses.
- Robustness of result annotations is linked to the signal-to-noise ratio of MS spectra.

Acknowledgements

Roche

Roche Pharma Early Research and Development

Mass spectrometry department: Miroslav Nikolov, Urs Hanke, Manuel Endesfelder Theresa Kober, Marco Böttger, Felipe Albrecht Annette Vogt

Research IT (pREDi) and Digitalization leads: Martin Bader, Wolfgang Paul, Rudolf Kinder, Dominik Weitl, Angelika Fuchs

Protein modeling (lego sketches): Alex Bujotzek

Roche Innovation Center Munich/Penzberg

Doing now what patients need next