Assessment of the Higher Order Structure of Monoclonal Antibody Therapeutics by NMR: Present and Future Directions

Yves Aubin

Centre for Biologics Evaluation-Regulatory Research Division, Health Canada

Analytical Technologies in the Biopharmaceutical Industry Europe Lisbon, Portugal 11-13 March 2020

People in the NMR laboratory

Geneviève Gingras From Genes to Magnet: Molecular biology, production of labeled proteins (*E. coli* and *Pichia Pastoris*)

Derek Hodgson Protein expression, NMR data collection

Dr. Houman Ghasriani From Samples to Structures: NMR data collection and analysis, structure determination and dynamics studies

Assessment of the Higher Order Structure of Protein Therapeutics : Biosimilars

For the approval of biosimilars, guidance documents have been developed by most regulatory agencies (European Union, Canada, Japan, United States and others).

The common guiding principle: only a reduced set of clinical trials will be required, provided that similarity is demonstrated with a thorough comparability exercise with a recognized comparator.

The comparability exercise includes an array of physico-chemical tests and biological assays to assess the similarity of various quality attributes between product and comparator.

Assessment of the Higher Order Structure of Protein Therapeutics

Amongst the set of critical quality attributes (CQA), the higher order structure (HOS) is the most important one

Actual methods used to assess the secondary and tertiary structure of recombinant protein therapeutics:

Circular Dichroism (2°) Fourier Transform Infra Red Spectroscopy (3°)

These yield low resolution information.

Assessment of the Higher Order Structure of Protein Therapeutics

Proposed methodology is based on simple NMR spectroscopy techniques to assess the bioactive conformation of a recombinant protein therapeutic.

Change in Local Magnetic Environment = Change in Local Conformation

2D¹H,¹⁵N-HSQC rhGM-CSF

2D ¹H,¹⁵N-HSQC rhGM-CSF

2D ¹H,¹⁵N-HSQC Leucotropin[™]

Natural Abundance

2D ¹H,¹⁵N-HSQC rhGM-CSF and Leucotropin[™]

(Aubin et al Anal. Chem 2008)

N17D and N37D induce specific chemical shift pertubations

Summary: When a protein folds, it folds!

Using a single 2D-NMR spectrum, the NMR fingerprinting method allowed the assessment of the **bioactive conformation** of a recombinant protein therapeutic at **amino acid resolution**:

Leucotropin[™] (secreted) and rhGM-CSF (refolded) share an identical conformation

The current sensitivity of the method allows the analysis of samples at 250 μ M protein concentration

Reported in Anal. Chem. (2008), 80, 2623-2627

Approved Therapeutic mAbs in US or EU (as of November 2014)

1. Abthrax (raxibacumab)	IgG1-lambda	25.	Nplatep (romiplostim)	lgG1-Fc + peptide (trombopoeitin receptor
2. Actemra (tocilizumab)	lgG1-kappa	26.	Nulojixq (belatacept)	lgG1-Fc + CTLA-4
3. Adcetrisc (brentuximab vedotin)	lgG1- ADC	27.	Orenciar (abatacept)	lgG1-Fc + CTLA-4
4. AlprolIXd (Factor IX Fc fusion protein)	IgG1-Fc + Factor IX	28.	Perjeta (pertuzumab)	lgG1-kappa
5. Arcalystf (rilonacept)	lgG1-Fc + IL1R	29.	Prolias (denosumab)	lgG2-kappa
6. Arzerra (ofatumumab)	IgG1-kappa	30.	Remicade (infliximab)	lgG1-kappa
7. Avastin (bevacizumab)	lgG1-kappa	31.	Removabt (catumaxomab)	lgG2ab (rat-mouse hybrid)
8. Benlysta (belimumab)	IgG1-lambda	32.	Remsimak I (infliximab [biosim	nilar]) IgG1-kappa
9. Cimziag (certolizumab pegol)	Fab'-PEG2MAL 40K	33.	ReoProu (abciximab)	Fab fragment
10. Cyramza (ramucirumab)	IgG1-kappa	34.	Rituxan (rituximab)	lgG1-kappa
11. Eloctateh (Factor VIII Fc fusion protein)	IgG1-Fc + Factor VIII	35.	Simponi/ Simponi Aria (golimu	umab) IgG1-kappa
12. Enbrel (etanercept)	IgG1-Fc + TNFR	36.	Simulect (basiliximab)	lgG1-kappa
13. Entyvio (vedolizumab)	lgG1-kappa	37.	Soliris (eculizumab)	IgG2/4-kappa
14. Erbitux (cetuximab)	IgG1-kappa	38.	Stelara (ustekinumab)	lgG1-kappa
15. Eyleaj (aflibercept)	lgG1-Fc + VEGF	39.	Sylvant (siltuximab)	lgG1-kappa
16. Gazyva (obinutuzumab)	IgG1-kappa	40.	Synagis (palivizumab)	lgG1-kappa
17 <mark>. Herceptin (trastuzumab)</mark>	lgG1-kappa	41.	Tysabri (natalizumab)	lgG4-kappa
18. <mark>Humira (adalimumab)</mark>	lgG1-kappa	42.	Vectibix (panitumumab)	lgG2-kappa
19. Ilaris (canakinumab)	IgG1-kappa	43.	Xgevas (denosumab)	lgG2-kappa
20. Inflectrak l (infliximab [biosimilar])	IgG1-kappa	44.	Xolair (omalizumab)	lgG1-kappa
21. Kadcylan (ado-trastuzumab emtansine)	lgG1-kappa + emtansine (ADC)	45.	Yervoy (ipilimumab)	lgG1-kappa
22. Keytruda (pembrolizumab)	IgG4-kappa	46.	Zaltrapw (ziv-aflibercept)	lgG1-Fc + VEGF
23. Lemtrada (alemtuzumab)	IgG1-kappa	47.	Zevalinx (ibritumomab tiuxeta	n) IgG1-kappa + linker + Yttrium-90
24. Lucentiso (ranibizumab)	Fab from IgG1-kappa			

Dawn M Ecker, Susan Dana Jones, and Howard L Levine (2015) *The therapeutic monoclonal antibody market*, mAbs 7:1, 9—14

Pushing the Limit: NMR of Therapeutic mAbs

Arbogast, Brinson and Marino demonstrated the application of NMR spectroscopy to obtain high-resolution 2D spectra of mAb fragments (Fab and Fc)

Arbogast, LW, Marino, JP, Brinson, RG (2015) Analytical Chemistry, 87: 3556-3561
Arbogast, LW, Brinson, RG, Formolo, T, Hoopes JT, Marino, JP (2016) Pharmaceutical Research, 33:462-475

Therapeutic mAbs

Therapeutic mAbs

Scott BJ, Klein AV, and Wang J (2014) J. Clin. Pharmacol.

Therapeutic mAbs

Fragment antigen binding (Fab): $V_H \ C_H 1 \ V_L \ C_L$ Fragment crystallisable (Fc): $C_H 2 \ C_H 3$

Papain cleaves after His between Fab and Fc

Samples Preparation

Papain cleavage using bulk enzyme immobilized on resin

Fab: recovered after Protein A column

Fc: recovered after Capture Select[™] column

Column were re-used ~ 5-7 times

All samples were analyzed in 50 mM Acetate-d3, pH 5.77

Hodgson DJ, Ghasriani H, Aubin Y. J Pharm Biomed Anal. 2018 Oct 1;163:144-152

Sample Preparation

2D-NMR of Rituximab-Fab 600 MHz

2D-¹H,¹⁵N-NMR of four Fab 700 MHz

2D-1H13C-NMR of four Fab 700 MHz

24

Fc sequence alignment

Fc domain : (NMR BMRB 25224) Domain CH2 Domain CH3

Ritux	:	TCPPCPAPELLGGPSVFLF	PPKPKDTLMISRTPEVTCVV	VDVSHEDPEVKFNWYVDGVE	VHNAKTKPREEQYNSTYRVV	SVLTVLHQDWLNGKEYKCKV
NMR	:	TCPPCPAPELLGGPSVFLF	PPKPKDTLMISRTPEVTCVV	VDVSHEDPEVKFNWYVDGVE	VHNAKTKPREEQYNSTYRVV	SVLTVLHQDWLNGKEYKCKV
Hercp	:	TCPPCPAPELLGGPSVFLF	PPKPKDTLMISRTPEVTCVV	VDVSHEDPEVKFNWYVDGVE	VHNAKTKPREEQYNSTYRVV	SVLTVLHQDWLNGKEYKCKV
Avast	:	TCPPCPAPELLGGPSVFLF	PPKPKDTLMISRTPEVTCVV	VDVSHEDPEVKFNWYVDGVE	VHNAKTKPREEQYNSTYRVV	SVLTVLHQDWLNGKEYKCKV
NIST	:	TCPPCPAPELLGGPSVFLF	PPKPKDTLMISRTPEVTCVV	VDVSHEDPEVKFNWYVDGVE	VHNAKTKPREEQYNSTYRVV	SVLTVLHQDWLNGKEYKCKV
Ritux	:	<mark>SNKALPAPIEKTISKAK</mark> GQ	PREPQVYTLPPSR <mark>D</mark> ELTKNQ	VSLTCLVKGFYPSDIAVEWE	SNGQPENNYKTTPPVLDSDG	SFFLYSKLTVDKSRWQQGNV
NMR	:	SNKALPAPIEKTISKAKGQ	PREPQVYTLPPSR <mark>D</mark> E <mark>L</mark> TKNQ	VSLTCLVKGFYPSDIAVEWE	SNGQPENNYKTTPPVLDSDG	SFFLYSKLTVDKSRWQQGNV
Hercp	:	SNKALPAPIEKTISKAKGQ	PREPQVYTLPPSR <mark>D</mark> E <mark>L</mark> TKNQ	VSLTCLVKGFYPSDIAVEWE	SNGQPENNYKTTPPVLDSDG	SFFLYSKLTVDKSRWQQGNV
Avast	:	SNKALPAPIEKTISKAKGQ	PREPQVYTLPPSR <mark>E</mark> E <mark>M</mark> TKNQ	VSLTCLVKGFYPSDIAVEWE	SNGQPENNYKTTPPVLDSDG	SFFLYSKLTVDKSRWQQGNV
NIST	:	SNKALPAPIEKTISKAKGQ	PREPQVYTLPPSR <mark>E</mark> E <mark>M</mark> TKNQ	VSLTCLVKGFYPSDIAVEWE	SNGQPENNYKTTPPVLDSDG	SFFLYSKLTVDKSRWQQGNV
Ritux	:	FSCSVMHEALHNHYTQKSL	S LSPGK			
NMR	:	FSCSVMHEALHNHYTQKSLS	S LSPG			
Hercp	:	FSCSVMHEALHNHYTQKSLS	5 LSPGK			
Avast	:	FSCSVMHEALHNHYTOKSLS	5 LSPGK			

DEL- 356-357-358

NIST : FSCSVMHEALHNHYTOKSLS LSPGK

X-ray structure of Fc domains

Backbone Assignment of Fc

Yagi et al. Biomol NMR Assign (2015) 9:257-260

Backbone Assignment of Fc

Yagi et al. Biomol NMR Assign (2015) 9:257-260

Two amino acids variants induce several chemical shift difference in the ¹H-¹⁵N spectrum

Conclusion

Proton-nitrogen spectra of Fc, it is possible to obtain a significanly higher level of resolution and identify small variations in the primary sequence.

The proton-carbon spectra provide a complementary set of information with higher sensitivity but less resolution.

Future work will aim at improving the sensitivity of the proton-nitrogen spectra.

A Deeper Understanding via Assignment of NMR Resonances

A complete or near complete assignment can be:

A powerful tool to understand the significance (or lack of) of spectral changes with regard to the conformation or the dynamics of the drug substance.

A mean to monitor various perturbations (pH, solution conditions, excipients) at the amino acid level.

Isotopic labeling of NISTmAb Fragments in *Pichia Pastoris*

Fab

Construction of a bis-cistronic vector inserted in the methylotropic *Pichia Pastoris* Polypeptide is secreted in the culture media after removal of the signal peptide.

Signal Peptide-EKREAEA – N-ter(Heavy [V_H-C_H1])

Signal Peptide-EKREAEA – N-ter(Light [V_L-C_L])

Fc

Signal Peptide-EKREAEA – N-ter(Heavy [C_H2-C_H3])

The final polypeptide is glycosylated with a high-mannose glycan that is further hyper mannosylated (Glycan MW is ~5000 Da by SDS-PAGE).

Isotopic labeling of NISTmAb Fragments in *Pichia Pastoris*

Isotopic labeling of NIST mAb Fragments in *Pichia Pastoris*

Developement and optimization of an expression protocol for the incorporation deuterium (²H)

And

Methyl protonation (U-²H,¹³C,¹⁵N, [¹³CH₃]-Fab, Fc)

Divide and Conquer: Production of scFv and scCH1-CL for Isotopic labeling in *E. Coli*

2D ¹H,¹⁵N-HSQC of ¹³C-¹⁵N-NISTmAb-scFv

Mapping the largest CSPs on the Structure of the RSV Peptide Bound to the NIST-mAb

Future Directions

Development of the refolding and purification protocol of NISTmAb-scFab is underway (*E. coli*).

Construction and expression tests of scFab and <u>scFv</u> version of <u>adalimumab</u>, bevacizumab, infliximab, <u>rituximab</u> and trastuzumab in *E. coli* are completed.

E.coli produced fragments will offer a potentially more economical avenue to study:

Effects of excipients

Development of a platform to study mAbs self-association

Effects of pH on chemical shifts

Effects of pH on Filgrastim Stability

GCSF - Thermal Denaturation at Varying pH Values

Canada

Canada

Lowering pH: Cation-π Interaction

42

Lowering pH: Cation-π Interaction

H156 W58 H52

H79 W118

Averaging of Order Parameters Reports on Secondary Structure Elements Amplitude of Motions

EXAMPLE 1 Formation of Cation- π Interaction Produces a more Compact Helix Bundle Leading to a Loosening of CD Loop

Health Santé Canada Canada

Formation of Cation- π Interaction Produces a more Compact Helix Bundle Leading to a Loosening of CD Loop

High Concentration of Sorbitol Loosens the Helix Bundle Loosening of AB and CD Loops

High Concentration of Sorbitol Loosens the Helix Bundle Loosening of AB and CD Loops

Thank you

