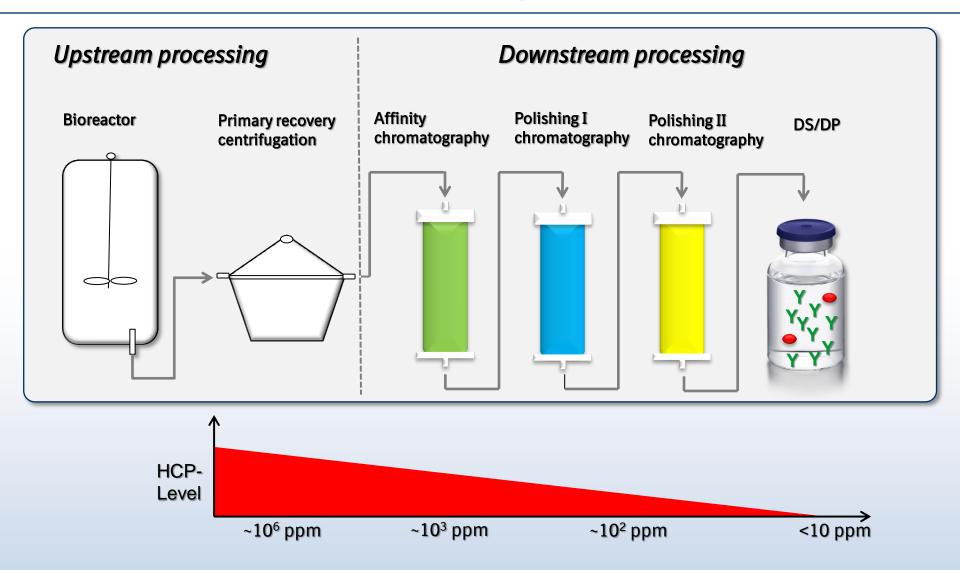
Identification and Quantification of Polysorbatedegrading Host Cell Protein Impurities in Biopharmaceuticals using Advanced Mass Spectrometry-based Techniques

Michael Zorn


Boehringer Ingelheim Pharma GmbH & Co. KG Innovation Unit Analytical Development Biologicals

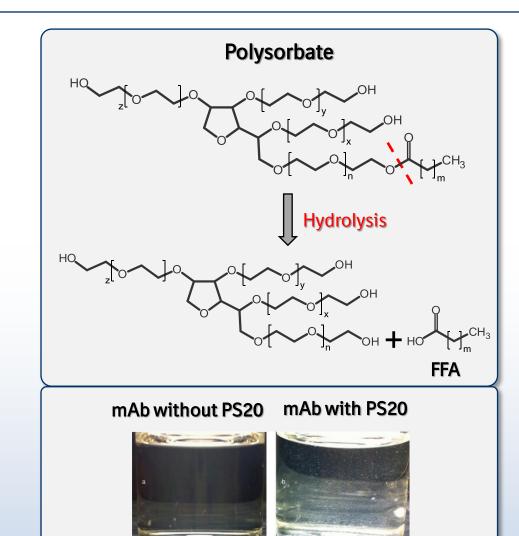
Outline

- Introduction to process-related protein impurities
 - Bioprocess and host cell proteins (HCPs)
 - Polysorbate-degradation through lipolytic enzyme activity
- Advanced sample preparation strategies for sensitive identification and quantification of HCPs in bulk drug substance via LC-MS
 - I. Quantification of target lipases in polysorbate-free drug substance
 - II. Hexapeptide-based HCP-enrichment and isotope dilution mass spectrometry for relative quantification of lipases
 - III. Establishment of an activity-based probes (ABP) proteomic workflow for lipase profiling
- Summary

Process-related Protein Impurities

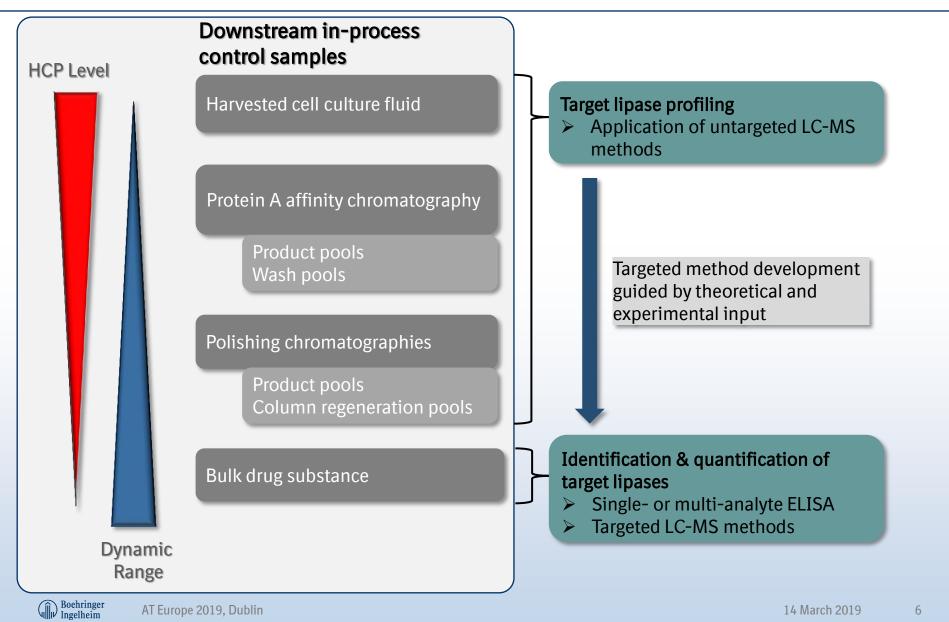
3

Impact of Process-related Protein Impurities


Potential to impact product quality, efficacy and patient safety

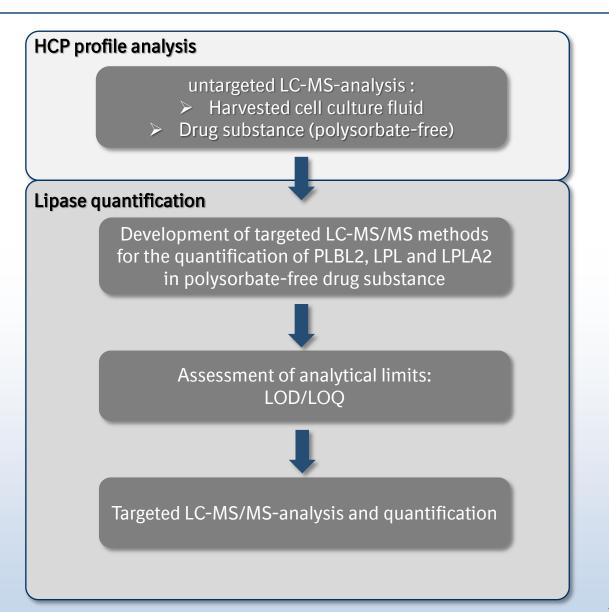
- May potentially induce immune response in patients
- Impact of API potency by blockage of mAb paratope
- Undesired API variants due to presence of catalytic activity of proteases and disulfide reductases
- Polysorbate degradation by lipolytic enzymes

Impact of Process-related Protein Impurities on Excipients Stability


- Polysorbates commonly used to improve stability of API
- Present in majority of biopharmaceuticals
- Prone to degradation by hydrolysis and auto-oxidation
- Susceptible to enzymatic cleavage of ester bond because of structural similarity to triglycerides

Siska et al., J. Pharm. Sci., 104, 447 (2015)

5


Strategy for Identification and Quantification of Process-related Protein Impurities

Outline

- Introduction to process-related protein impurities
 - Bioprocess and host cell proteins (HCPs)
 - Polysorbate-degradation through lipolytic enzyme activity
- Advanced sample preparation strategies for sensitive identification and quantification of HCPs in bulk drug substance via LC-MS
 - I. Quantification of target lipases in polysorbate-free drug substance
 - II. Hexapeptide-based HCP-enrichment and isotope dilution mass spectrometry for relative quantification of lipases
 - III. Establishment of an activity-based probes (ABP) proteomic workflow for lipase profiling
- Summary

Quantification of Lipases in Polysorbate-free Drug Substance

LOD and LOQ Assessment for LPL, PLBL2, and LPLA2

Sample preparation:

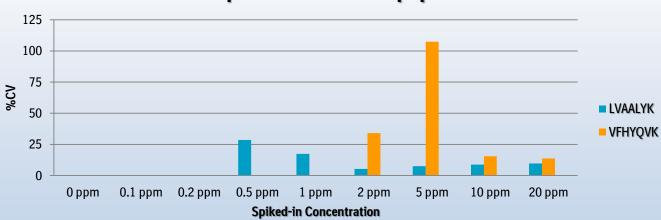
- recombinant PLBL2, LPLA2 and LPL proteins were spiked into polysorbate-free drug substance at 0, 0.1, 0.2, 0.5, 1, 2, 5, 10, and 20 ppm
- Native digestion* and removal of incompletely digested mAb by heating and centrifugation

LC-MS instrumental setup and data processing

- Waters Acquity Arc HPLC (85 min gradient-run) coupled to Thermo Q Exactive Plus
- Parallel reaction monitoring data analysis software:
 Skyline 4.1

Spiking of recombinant lipases

Peptide mixture


 \sim

Limit of Quantification Assessment for LPL

9.00E+06 y = 389076x - 14284 8.00E+06 $R^2 = 0.9771$ 7.00E+06 **Fotal Peak Area** 6.00E+06 5.00E+06 4.00E+06 LVAALYK 3.00E+06 2.00E+06 1.00E+06 0.00E+00 12 0 2 6 8 10 14 16 18 20 4 mixed-in ppm LPL precision for each peptide

Calibration curve

Limit of Quantification Assessment for LPL

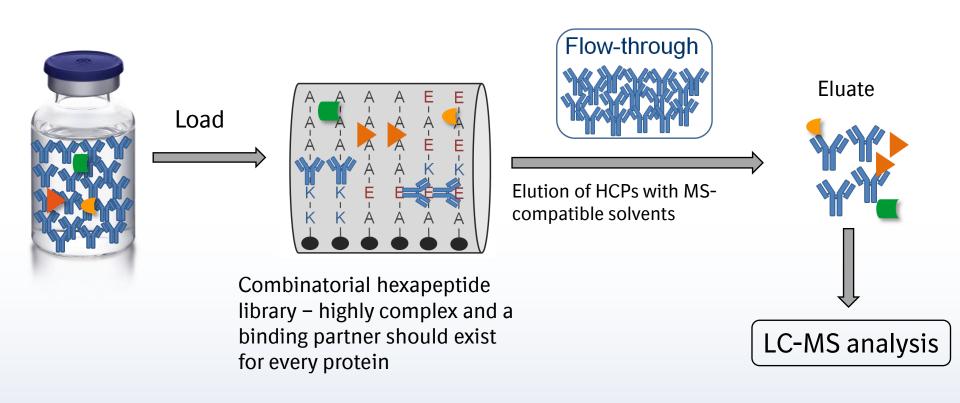
LPL can be confidently detected at 5 ppm spiking level.

The recovery was determined by comparing the theoretical spiking level and the readout from the standard curve by peptide **LVAALYK.** The LOQ for LPL is determined as 10 ppm.

	Readout from standard curve (ppm)								
LVAALYK	-	-	-	-	0.2	1.2	5.8	11.7	19.1
Spiked-in value	0.0	0.1	0.2	0.5	1.0	2.0	5.0	10.0	20.0
Spiked-in recovery [%]	-	-	-	-	23.1	60.3	115.7	117.1	95.3

Limit of Detection and Limit of Quantification for PLBL2, LPL and LPLA2

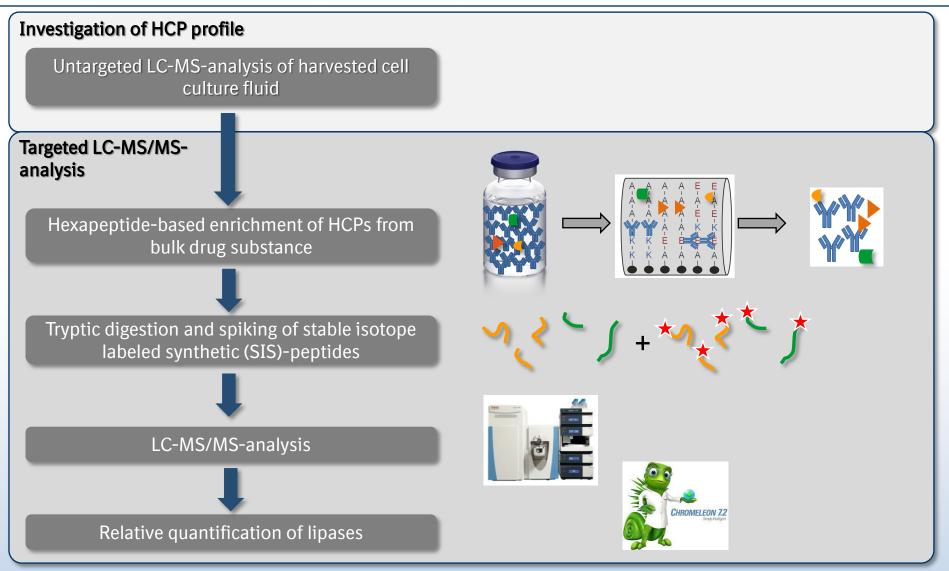
Lipase	Limit of detection	Limit of quantification
PLBL2*	<2 ppm	<2 ppm
LPLA2	1 ppm	1 ppm
LPL	5 ppm	10 ppm


*PLBL2 exists in the respective drug substance.

- LOD determination criteria: The MS² detectible level
- LOQ determination criteria: Spiked-in recovery= 75-125%, and precision CV% for each peptide measurement ≤25%

Outline

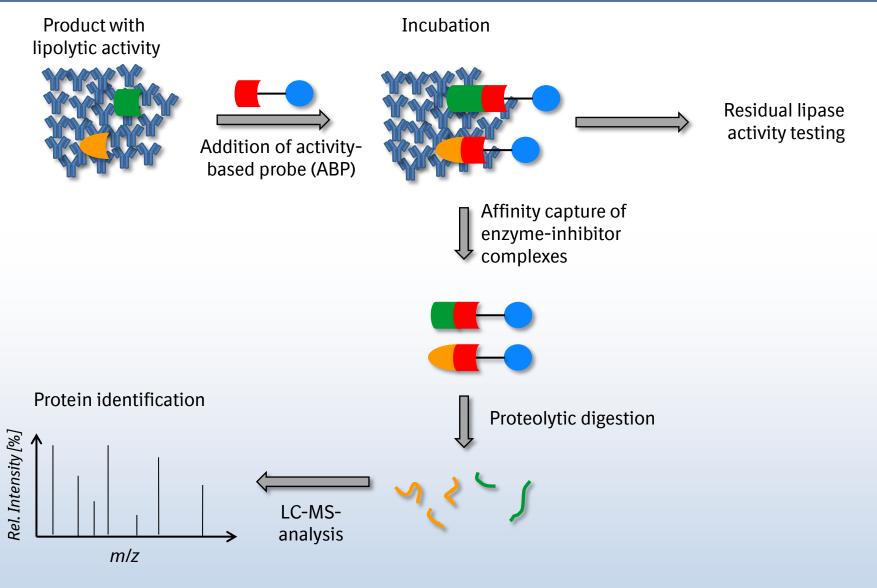
- Introduction to process-related protein impurities
 - Bioprocess and host cell proteins (HCPs)
 - Polysorbate-degradation through lipolytic enzyme activity
- Advanced sample preparation strategies for sensitive identification and quantification of HCPs in bulk drug substance via LC-MS
 - I. Quantification of target lipases in polysorbate-free drug substance
 - II. Hexapeptide-based HCP-enrichment and isotope dilution mass spectrometry for relative quantification of lipases
 - III. Establishment of an activity-based probes (ABP) proteomic workflow for lipase profiling
- Summary


Mechanism of HCP Enrichment by ProteoMiner[™] Kit

> Majority of highly abundant API is depleted while low abundant HCPs are retained

Relative Quantification of Lipase Level in Drug Substance via Isotope Dilution Mass Spectrometry

Relative Quantification of Lipase Level in Drug Substance via Isotope Dilution Mass Spectrometry

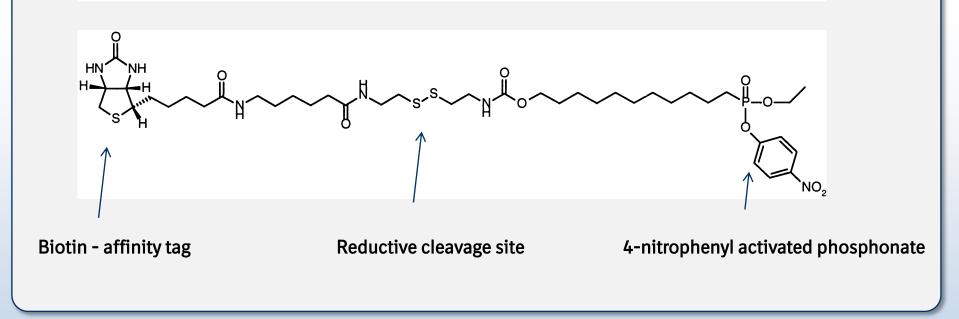

Bulk drug substance batch	Ι	II
Lipase I level	100%	98%
Lipase II level	100%	467%
Observation of PS20 degradation	-	+

→ Relative quantification of lipase levels in BDS indicates Lipase II as the potential lipolytic enzyme causing PS20-degradation

Outline

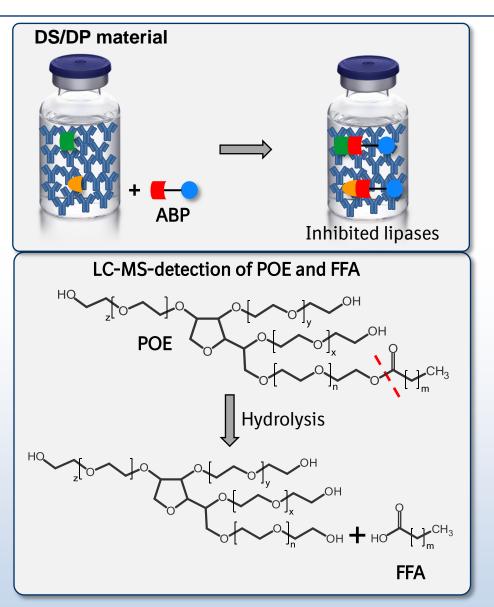
- Introduction to process-related protein impurities
 - Bioprocess and host cell proteins (HCPs)
 - Polysorbate-degradation upon lipolytic enzyme activity
- Advanced sample preparation strategies for sensitive identification and quantification of HCPs via LC-MS in bulk drug substance
 - I. Quantification of target lipases in polysorbate-free drug substance
 - II. Hexapeptide-based HCP-enrichment and isotope dilution mass spectrometry for relative quantification of lipases
 - III. Establishment of an activity-based probes (ABP) proteomic workflow for lipase profiling
- Summary

Activity-based Probes for Profiling lipolytic Enzymes


Activity-based Probes for Profiling lipolytic Enzymes

A Novel Biotinylated Suicide Inhibitor for Directed Molecular Evolution of Lipolytic Enzymes

H.-J. Deussen,* S. Danielsen, J. Breinholt and T. V. Borchert


Protein Discovery, Novo Nordisk A/S, Novo Allé, 2880 Bagsværd, Denmark

Received 7 July 1999; accepted 11 October 1999

Screening for effective Lipase-Inhibitors

- PS20 stability testing in DS/DP material in presence of lipase-inhibitor
- Incubation for several days at 25°C
- LC-MS-monitoring of intact Polysorbate-esters
 - ➢ e. g. isosorbide C12
- LC-MS-monitoring of free fatty acids
 - ➢ e. g. lauric acid

Activity-based Probes for Profiling lipolytic Enzymes

LC-MS-analysis of POE content **Isosorbide C12 Isosorbide C12 Isosorbide C12** Isosorbide C12 Inhibitor I **Drug Substance** Placebo **Inhibitor II** 120 120 120 120 relative Intensity [%] relative Intensity [%] relative Intensity [%] relative Intensity [%] 100 100 100 100 80 80 80 80 60 60 60 60 40 40 40 40 20 20 20 20 0 0 0 0 Incubation time [days] Incubation time [days] Incubation time [days] Incubation time [days] LC-MS-analysis of FFA content Lauric Acid Lauric Acid Lauric Acid Lauric Acid **Drug Substance Inhibitor I Inhibitor II** Placebo 6000 6000 6000 6000 Concentration [ng/mL] [ng/mL] [ng/mL] Concentration [ng/mL] 5000 5000 5000 5000 4000 4000 4000 4000

Concentration

3000

2000

1000

0

Incubation time [days]

21 14 March 2019

3000

2000

1000

n

Incubation time [days]

Boehringer Ingelheim

Incubation time [days]

3000

2000

1000

0

Concentration

3000

2000

1000

0

Incubation time [days]

Strategy for the identification & quantififcation of polysorbate-degrading enzymes in biopharmaceutical products

Native digestion and LC-MS-analysis of polysorbate-free drug substance allows quantification of LPL, PLBL2 and LPLA2 ≤ 10 ppm

Hexapeptide-based HCP-enrichment and isotope-dilution mass spectrometry are advantageous for relative lipase quantification in bulk drug substance material

> Establishment of activity-based probes for profiling of lipolytically active enzymes

Acknowledgement

Boehringer Ingelheim Pharma GmbH & Co. KG

DEV ADB & RES MedChem, Biberach

Bernd Reisinger Andreas Feigler Corinna Ruedi Kathrin Fischer Marianne Scheffold Florian Binder

BP BPAD, Fremont Yuan Gao Guifeng Jiang Sara Wright Min Zhu

Thank you for your Attention

Boehringer Ingelheim Pharma GmbH & Co. KG

DEV ADB & RES MedChem, Biberach

Bernd Reisinger Andreas Feigler Corinna Ruedi Kathrin Fischer Marianne Scheffold Florian Binder

BP BPAD, Fremont Yuan Gao Guifeng Jiang Sara Wright Min Zhu

Boehringer Ingelheim

