

Characterization of new antibody-derived therapeutics at the intact and middle-up level of analysis using sheathless CE-MS

Elena Dominguez-Vega

Center for proteomics and metabolomics

AT EUROPE

DUBLIN, 13-MARCH-2019

Monoclonal antibodies

Most selling pharmaceuticals: eg. Adalimumab, Infliximab, Rituximab, Trastuzumab

Microheterogeneity

- N-glycan variability
- Post-translational modifications (PTMs)
- incomplete disulfide bond formation

2

...

Macroheterogeneity

- Aggregation
- Free chains (*e.g.* free LC, free HC)
 - Partial cleavage

. . .

۲

Analytical characterization

New antibody formats

 $\mu_{electro} = \frac{\lambda}{6\pi m} \cong C \frac{\lambda}{M^{\alpha}}$

- small diffusion coefficient is advantage
- reveal subtle protein differences/changes

•no stationary phase; free solution, no interaction

• denaturing and native separation

Assessment of protein heterogeneity

Versatility

CE provides good opportunities to characterize new antibody formats

13/03/2019

CE-MS of intact proteins

Sheathless CE-MS (CESI-MS)

- improves ionization efficiency by nanospray
- no additional liquid:
 - avoids dilution (increased sensitivity)
 - decreases noise
 - allows native MS (conformation studies)

Avoiding protein adsorption in CE(-MS)

Capillary coatings for CESI-MS

Positive coatings: PEI

Neutral coatings

No EOF

CESI-MS systems for intact protein analysis

- Protein test mixture (RNaseA, Lysozyme and Cytochrome C, 0.2 μg/μL each)
- BGE 50 mM ammonium acetate pH 3.0

Outline

Nanobodies

Cameloid antibodies

~100 kDa

Common modifications of nanobodies:

Heterogeneity

- Non-glycosylated
- PTMs, *eg.* deamidation, pyroglutamate Degradation products
- Truncated forms (*e.g. Myc-His* tag)

Multivalent nanobodies

Improper linkage (monovalent nanobody)

CESI-MS of nanobody-1

BGE, 50 mM ammonium acetate (pH 3.0). 1 μ M sample (10 ng/ μ L)

peak	mass (Da)	assignment
1	14590.2	Nb1
2	14591.2	deamidated Nb1

CESI-MS of nanobody-1

BGE, 50 mM ammonium acetate (pH 3.0). 1 μ M sample (10 ng/ μ L)

peak	mass (Da)	assignment
1	14590.2	Nb1
2	14591.2	deamidated Nb1

peak	mass (Da)	assignment
1	14590.2	Nb1
2	14591.2	deamidated Nb1
3	15527.7	Nb1+(GGGGS) _{3?}
4	28835.4	Nb1-35GS-Nb1
5	28836.4	deamidated Nb1-35GS-Nb1

CESI-MS of nanobody-2

Outline

Bispecific antibodies

two different binding sites (different targets)

Common side products

Middle-up approach: Domain specific analysis of microheterogeneity

CESI-MS of digested monoclonal antibodies

Charge heterogeneity of Fc/2 fragments

Middle-up of bispecific antibodies

Monospecific mAb

3 FRAGMENTS

CE-FTICR-MS of a bispecific mAb

CE-FTICR-MS of a bispecific mAb

CE-FTICR-MS of a bispecific mAbs

BGE, 10% Acetic Acid + 20% IPA Separation, -20 kV, 20 °C

Outline

Fusion protein with multiple glycosylation sites

New biological entity (NBE) Bifunctional fusion protein

- ➢ 6 potential glycosylation sites
- Elongated heavy chain (> 180 kDa)
- Reduction of -S-S- bridges results in two main fragments
 - Fragment A: non glycosylated
 - Fragment B: 3 potential glycosylation sites, Asn1, Asn2 and Asn3
 - O Asn1 and Asn2 fully occupied
 - O Asn3 occupancy 50%

CESI-MS of protein with multiple glycosylation sites

New biological entity (NBE) Bifunctional fusion protein 1.25 Reduction 2X 2X + 1.00 Asn1 Asn1 DTT Asn1 Asn2 Asn2 Asn2 Intensity x10⁵ Asn3 Asn3 Asn3 0.50 No EOF 0.25 BGE, 10% Acetic Acid 0.00

18

Time (min)

12

14

16

10

6

4

CESI-MS of protein with multiple glycosylation sites

New biological entity (NBE) Bifunctional fusion protein **PyroE** 1.5 Reduction 2X + 2X Asn1 Asn1 DTT Asn1 Asn2 Asn2 Intensity x10⁴ 0°1 Asn2 Asn3 2220 Asn3 Asn3 Asn3 No EOF 0.5 BGE, 10% Acetic Acid 0.0 Time (min) 10 12 14 16 18 20

Glycoforms containing glycans at Asn1 and Asn2

Glycoforms containing glycans at Asn1, Asn2 and Asn3

Conclusions

Sheathless CE-MS allows characterization of different new antibody-derived therapeutics

efficient protein separations

➤ sensitive detection

> suitable for proteins with very different characteristics

> assessment of micro and macroheterogeneity

Perspectives

- study of antibody interactions
- analysis of human immunoglobulins

Acknowledgements

CPM – Glycomics and Glycoproteomics

Christoph Gstöttner Steffen Lippold Simone Nicolardi Manfred Wuhrer

BioAnalytical Chemistry Rob Haselberg Govert W. Somsen Medicinal Chemistry Raimond Heukers

Martine Smit

SCIEX