

Can low resolution MS generate high-quality MAM Data and replace high resolution MS for process development support?

Scott Corley, Sr. Scientist, Analytical Science, Boehringer Ingelheim Fremont, CA, USA

Our mission: Producing value to customers to help patients

- Founded 1885 in Ingelheim, Germany
- Focus on Human Pharmaceuticals, Animal Health and <u>Biopharmaceutical Contract Manufacturing</u>
- Around 50,000 employees worldwide
- 181 affiliated companies worldwide
- Net sales of around EUR 18.1 billion

Status April 2018

CASSS AT Europe, March 13th, Scott Corley, Boehringer Ingelheim Fremont, CA
Confidential & Privileged by Boehringer Ingelheim BioXcellence™

Boehringer Ingelheim

Our development and production network spans the globe

CASSS AT Europe, March 13th, Scott Corley, Boehringer Ingelheim Fremont, CA Confidential & Privileged by Boehringer Ingelheim BioXcellence™

3

Outline

- Motivation and Strategic Goals
- Method development
- Proof of concept studies
- Challenges and future work

Motivation

At Boehringer Ingelheim Fremont, we are evaluating low resolution MS for a comprehensive assay to

- support method development
- improve process understanding
- conduct timely investigations

Method under evaluation for multi-attribute information

- routine monitoring of critical attributes
- to supplement/replace peptide map by UV, CEX, CE-SDS, HILIC glycan, where possible

Advantages of a low resolution mass spectrometer, e.g., the Waters QDa®

- facility / local knowledge fit with Waters HPLC/UPLC and Empower knowledge
- does not require a MS expert to run
- reduce support from HRMS and/or need for additional costly instrument to support development

MS systems utilized

www.waters.com

Waters Xevo® G2-S QTof

- 20 4000 mass range in resolving mode
- UNIFI Software 1.8
- Used for:
 - Routine peptide map analyses
 - Intact mass analyses
 - Disulfide Map

Waters ACQUITY® QDa®

- Single Quadrupole, 50 1250 m/z range
- Single Ion Response (SIR) channels
- Automated mass calibration
- Does not require a MS expert; uses Empower
- Fits on top of UPLC

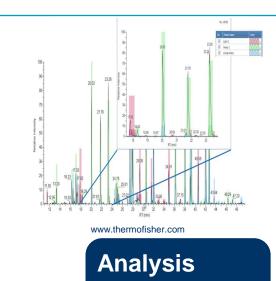
Workflow, utilizing Automation on the Agilent Bravo®

Aglient Bravo® Automated Liquid Handling Platform

www.agilent.com

Sample Prep

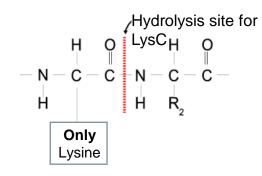
- Denaturing
- Alkylating
- Digesting

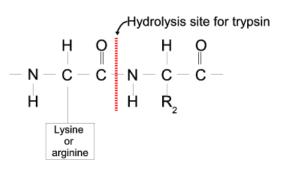


www.waters.com

Testing

 Reverse Phase UPLC QDa® Mass


Detector



- Sequence Coverage
- PTM analysis

Lysyl Endopeptidase (LysC) vs. Trypsin

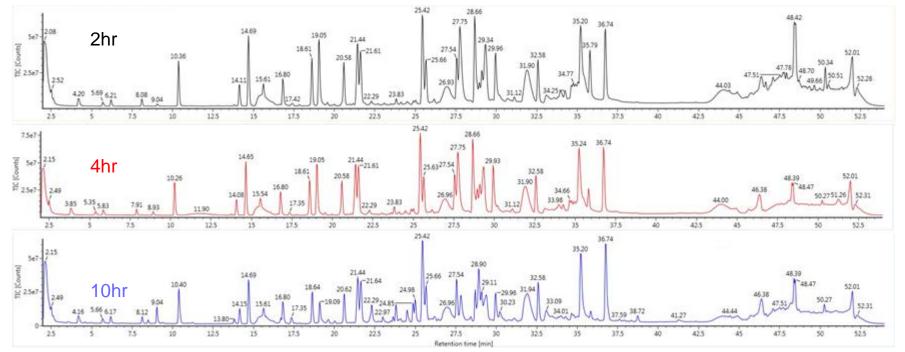
8

Lysyl Endopeptidase (LysC)

- Resistant to GnHCl and lower pH
- Cleaves mAb into manageable peptides
- Literature/ preliminary data promises glycan analysis

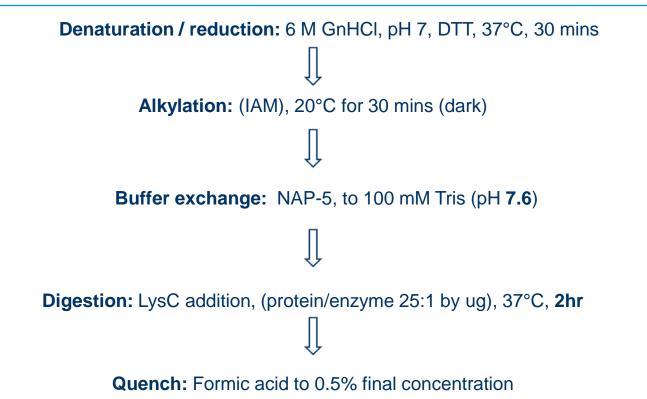
Trypsin

- Most common peptide for enzymatic digest
- Local knowledge, abundant data available
- Cost-effective


Why Lys-C Digestion?

Lys-C	Glycan Species	Observed RT (min)	Response	Observed m/z	Charge	Percentages (%)
	A2FG0	27.88	7764188	981.8715	5	69.8
	A1FG0	27.87	1739986	941.2555	5	15.6
	A2FG1	27.82	1209883	1014.282	5	10.9
	Man5	28.04	407436	936.2486	5	3.7

Trypsin	A2G0	5.49	71212	1244.496	2	0.90
	A2FG0	5.47	4038897	1317.521	2	51.23
	A1FG0	5.47	2652483	1215.981	2	33.65
	A2FG1	5.31	689437	932.7008	3	8.75
	A1FG1	5.3	175214	1297.006	2	2.22
	Man5	5.27	255997	1203.464	2	3.25


2hr Digestion

 \rightarrow 96 % coverage of HC, 100% of LC

Peptide digestion manual

CASSS AT Europe, March 13th, Scott Corley, Boehringer Ingelheim Fremont, CA Confidential & Privileged by Boehringer Ingelheim BioXcellence™

11

Monitoring PTMs

- Methionine Oxidation
- Deamidation

• Forced oxidation; 0.3% H₂O₂, room temperature, 12 hrs

Peptide	Modifiers	Response	RT (min)	Control (%)		Forced C	Dxidation
				QToF	QD a®	QToF	QDa ®
HC_K1	control	98523008	28.69	99.34	100		
	Oxidation M [34]	656257	27.03	0.66	0	8.19	7.9
HC_K4	control	43863384	21.59	99.72	99.3		
	Oxidation M [7]	124855	18.66	0.28	0.7	7.83	6.2
	control	150148640	25.44	97.61	97.2		
HC_K14	Oxidation M [4]	3679532	24.13	2.39	2.8	99.21	96.5
HC_K23	control	62552828	15.42	99.47	99.0		
HC_K23	Oxidation M [18]	335108	13.68	0.53	1.0	92.6	91.6
HC K28	control	72748120	19.06	99.71	99.5		
TC_K20	Oxidation M [14]	213808	15.97	0.29	0.5	99.62	98.8

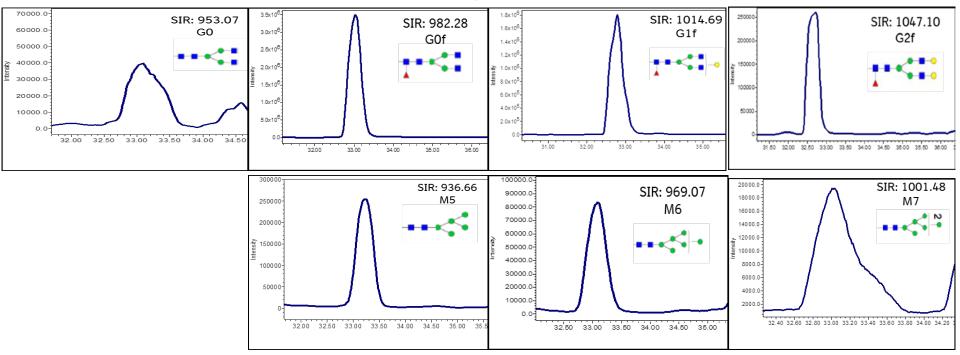
• Results comparable

Asn Deamidation

- Forced deamidation; pH 10, 12 hrs, 37 °C
- +3 or +4 charge state, 0.33 or 0.25 m/z difference

Peptide	Modifiers	Response	ResponseRT (min)Control (%)Forced Dean		Control (%)		amidation
				QToF	QDa ®	QToF	QDa ®
HC K5	control	33184612	29.08	98.1		98.9	
	Q [17]	380241	30.12	1.7	N/A	1.1	N/A
	control	42216892	21.41	100		99.7	
HC_K15	N [12]	0	N/A	0	N/A	0.3	N/A
HC K25	control	28573212	25.62	99.6		96	97.3
HC_K25	N [14]	116288	25.99	0.4	N/A	4	2.7
	control	72062728	29.31	99.8		99.6	
LC_K6	N [11 or 12]	118745	30.36	0.2	N/A	0.4	N/A

Monitoring N-linked Glycans with Lys C digest


- N-linked glycopeptide is on a conserved region of the mAb
- + 5 charge state was used for glycan monitoring

Glycan	Structure	(M + 4H ⁺) / 4	(M + 5H⁺) / 5
nG		865.95	692.97
G0		1190.57	952.66
G0F-Gn	T<)	1139.80	912.04
G0F	** *	1227.09	981.87
G1F	***	1267.60	1014.28
G2F	***	1308.11	1046.69
M5	<	1170.06	936.25
M6		1210.57	968.66
M7		1251.09	1001.07

Monitoring Major Glycans

QDa® SIR channels of N-linked Glycans

Glycan Profile

Modifiers	Response	RT (min)	Observed m/z	Charge	QToF
nG	334944	29.25	692.9649	5	0.44
G0F	48088500	27.64	981.8723	5	63.20
G0F-Gn	16201595	27.63	941.2565	5	21.29
G1F	8763085	27.55	1014.282	5	11.52
G2F	329510	27.51	1046.692	5	0.43
Man5	2372267	27.73	936.25	5	3.12

Average G0F is 2.2% by HILIC-UPLC oligo map

Glycosylation, by QDa®

After correcting for in-source fragmentation of G0F to G0F-Gn, data of abundant glycans are comparable

	mAb 1						
	De	v. Std. Lo	ot 1	Dev	. Std. Lo	ot 2	
	QTof (%)	QDa® (%)	HILIC (%)	QTof (%)	QDa® (%)	HILIC (%)	
G0F	74.9	74.0	75.1	74.3	74.7	75.0	
G1F	11.7	13.0	9.7	13.5	13.1	12.3	
G2F	0.43	0.55	0.37	-	-	-	
Man5	4.0	3.5	5.7	3.6	3.6	4.3	

Case study:

- The effect of glucose limitation was investigated as a potential process improvement by our upstream partners
- Product quality was monitored
- CEX and HILIC glycan were used to determine PQ
- Our method was evaluated for comparison

Effect of culture conditions on high Mannose (Man 5)

- High Mannose is a known complication of glucose limitation due to limit of GlcNaC production
- MS was used to corroborate glycan determination by HILIC

	Current Fed-batch Process			Reduction of Glucose on Fed-batch		
	mAb 1 _DS2	mAb 1_BDS	mAb 1 _ctrl	mAb 1 (75%)	mAb 1 (95%)	mAb 1 (95% Day1-5; 115% Day 5 -13)
HILIC	4.3	5.7	4.2	22.6	16.3	12.3
QTof	3.6	4	2.9	29.2	19.9	11.1
QDa®	3.6	6.2	4.8	27.0	19.8	13.9

Effect of culture conditions on presence of C-terminal Lysine

- High % BPG (by CEX) correlated with severity of glucose limitation
- Contribution of C-term Lys to high BPG investigated by Carboxypeptidase B digest
- C-term Lysine investigated by QDa®
 - Conserved C-term peptides (SLSLSPGK and SLSLSPG)
 - SLSLSPK is more likely to have +2 charge state than SLSLSPG
 - QDa® SIRs were monitored for the +1 and + 2 charge states of each peptide
 - Potential for ionization efficiency differences; not controlled

Method	Current Fed-batch Process	Reduction of Gluco	ose on Fed-batch
	mAb 1 (control conditions)	mAb 1 a (most restricted)	mAb 1 b (restricted)
C-term Lysine estimate	6.5%	16.8%	13.3%
QDa® (C-term Lys)	19.0%	37.0%	28.5%

- QDa® sensitive to C-term Lysine; overestimates value data compared to CEX
 - Correction factors will be considered

What We Achieved:

Developed a multi-attribute assay which:

- can monitor PTM's, major glycan species
- good agreement with HRMS and orthogonal techniques

Advantages of approach

- leverage of automated sample prep to save hands-on time
- can support in place of HRMS, eliminate need for additional instrumentation and/or MS SME time

Potential as a strong tool during process development

- support process monitoring
- conduct investigations, e.g., potential to replace C-term Lys investigation with CP-B

Acknowledgements

BI Fremont Analytical Science:

- Alex Chen
- Tanu Priya
- Chris Warner
- Eike Zimmermann
- Yuan Guo
- Paulina Tau
- Guifeng Jiang
- Kenji Furuya

Boehringer Ingelheim Biopharmaceuticals GmbH

Binger Straße 173, 55216 Ingelheim am Rhein, Germany

Phone +49 (0) 6132 770 Fax +49 (0) 6132 720

bioxcellence@boehringer-ingelheim.com www.bioxcellence.com

For more information have a look at www.bioxcellence.com

© Boehringer Ingelheim Biopharmaceuticals GmbH 2019

The concepts, statements and data elaborated in this presentation are the intellectual property of Boehringer Ingelheim Biopharmaceuticals GmbH and are subject to current copyright law. Complete or partial reproduction and passing on to third parties is not permitted.

