Modernizing the Platform Characterization Peptide Map for Accurate Assessment of Deamidation and Isomerization by LC-MS/MS

Lisa A. Marzilli, Elaine Stephens, Michelle English,

Shibu Philip* and Jason C Rouse

Analytical R&D, Pharmaceutical Sciences, Andover, MA, *Pearl River, NY

Antibody Considerations as a Drug Candidate

Typical parameters in selecting lead antibody:

Antibodies have a propensity to degrade: manufacturing, storage and in vivo administration

Early Product Development Challenge

Determine Degradation Hotspots Sequence Liabilities or CQAs? Engineer to Eliminate Sequence Liability?

- Oxidation: Met & Trp
- Deamidation: Asn and Gln
- Isomerization: Asp
- Glycation: Lys
- Truncations: Asp-Pro
- Molecular modeling
- Peptide mapping

- Does hotspot impact antigen binding?
- Focus on complementarity determining regions (CDRs)
- Constant region hotspots may be potential liabilities

Deamidation/Isomerization Scheme

The Ideal Peptide Map

- Robust and easy to perform
- Complete sequence coverage

- High quality separations (in a MS-friendly solvent)
- High quality UV chromatograms
- Minimal method-induced artifacts (short digestion times, low pH)
- Accurate targeted quantitation (Extracted Ion Chromatograms)

Developed in-house, automated software to highlight potential "hotspots"

Trast	uzumab L Chain CDR Hotspots	
1	DIQMTQSPSSLSASVGDRVTITC <u>RASQDV</u> N	30
31	T AVAWYQQKPGKAPKLLIY <u>SASFLYS</u> GVPS	60
61	RFSGSRSGTDFTLTISSLQPEDFATYYC <u>QQ</u>	90
91	<u>HYTTPPT</u> FGQGTKVEIKR	
Trast	uzumab H Chain CDR Hotspots	
1	EVQLVESGGGLVQPGGSLRLSCAAS <u>GFNIK</u>	30
31	DTYIHWVRQAPGKGLEWVARIYPT NG YTRY	60
61	A DS V K GRFTISADTSKNTAYLQMNSLRAED	90
91	TAVYYCSR <mark>W</mark> GG DG FYA M DYWGQGTLVTVSS	120
121		

- Automatically underlines
 CDR1, CDR2 and CDR3
- Highlights potential hotspots in blue

Case Study #1 Using Trastuzumab (Herceptin®) as a Benchmark for Peptide Map Method Development

Trast	uzumab L Chain CDR Hotspots		Rel. Abundance
1	DIQMTQSPSSLSASVGDRVTITC <u>RASQDV</u> N	30	High level (>5%)
31	T AVAWYQQKPGKAPKLLIY <u>SASFLYS</u> GVPS	60	Low level (1-5%)
61	RFSGSRSGTDFTLTISSLQPEDFATYYC <u>QQ</u>	90	Potential (<1%)
91	<u>HYTTPPT</u> FGQGTKVEIKR		
Trast	uzumab H Chain CDR Hotspots		Rel. Abundance
1	EVQLVESGGGLVQPGGSLRLSCAAS <u>GFNIk</u>	30	High level (>5%)
31	DT YIHWVRQAPGKGLEWVA <u>RIYPTNGYTRY</u>	60	Low level (1-5%)
31 61	DTYIHWVRQAPGKGLEWVA <u>RIYPTNGYTRY</u> ADSVKGRFTISADTSKNTAYLQMNSLRAED	60 90	Low level (1-5%) Potential (<1%)
31	DTYIHWVRQAPGKGLEWVARIYPTNGYTRY ADSVKGRFTISADTSKNTAYLQMNSLRAED	60	Low level (1-5%)

Case Study #1 Using Trastuzumab (Herceptin®) as a Benchmark for Peptide Map Method Development

Trast	uzumab L Chain CDR Hotspots		Rel. Abundance
1	DIQMTQSPSSLSASVGDRVTITC <u>RASQDVN</u>	30	High level (>5%)
31	T AVAWYQQKPGKAPKLLIY <u>SASFLYS</u> GVPS	60	Low level (1-5%)
61	RFSGSRSGTDFTLTISSLQPEDFATYYC <u>QQ</u>	90	Potential (<1%)
91	<u>HYTTPPT</u> FGQGTKVEIKR		
Trast	uzumab H Chain CDR Hotspots		Rel. Abundance
Trast	uzumab H Chain CDR Hotspots	30	Rel. Abundance High level (>5%)
Trast 1 31	Euzumab H Chain CDR Hotspots EVQLVESGGGLVQPGGSLRLSCAASGFNIK DTYIHWVRQAPGKGLEWVARIYPTNGYTRY	30 60	Rel. Abundance High level (>5%) Low level (1-5%)
Trast 1 31 61	Euzumab H Chain CDR Hotspots EVQLVESGGGLVQPGGSLRLSCAASGFNIK DTYIHWVRQAPGKGLEWVARIYPTNGYTRY ADSVKGRFTISADTSKNTAYLQMNSLRAED	30 60 90	Rel. AbundanceHigh level (>5%)Low level (1-5%)Potential (<1%)
Trast 1 31 61 91	EUZUMAB H Chain CDR Hotspots EVQLVESGGGLVQPGGSLRLSCAASGFNIK DTYIHWVRQAPGKGLEWVARIYPTNGYTRY ADSVKGRFTISADTSKNTAYLQMNSLRAED TAVYYCSRWGGDGFYAMDYWGQGTLVTVSS	30 60 90 120	Rel. AbundanceHigh level (>5%)Low level (1-5%)Potential (<1%)

Asn Deamidation and Asp Isomerization vs. Trypsin Digestion Time (Time Course) for Trastuzumab (Herceptin®)

Digestion Time Can Influence Level of Deamidation

Deamidation for Innovator Trastuzumab

- Time-course digestion facilitates the accurate measurement of deamidation at T=0
 - Digest for 30, 60 and 120 min
 - Report accurate deamidation levels

Literature	% Deamidation Level at N ⁵⁵ G (H-CDR2)
Genentech Harris 2001	~1 (CEX-HPLC)
Roche Sydow 2014	4 (pH 6.0 map)
Pfizer Results	
Innovator Trastuzumab	44 to 2

New Trypsin Peptide Map Shorter Digestion Times and Time-Course

- Time-course digestion facilitates the accurate measurement of deamidation at T=0
 Digest for 30, 60 and 120 min
- Efficient reduction, alkylation and digestion with Lys-C/trypsin (Promega) (pH 8.2)
- Waters XSelect XP CSH C18 column(formic acid)
- Reproducible UV chromatographic profiles

- Analyzed on a Thermo Orbitrap Fusion[™] Tribrid[™] Mass Spectrometer
 - Unprecedented depth of analysis
 - High quality MS/MS data (CID, ETD)
 - Use Fusion for PTM discovery

WORLDWIDE RESEARCH & DEVELOPMENT BioTherapeutics Pharmaceutical Sciences

Low-artifact Trypsin Digest Methods

Asn Deamidation and Asp Isomerization in Trastuzumab (Herceptin®) Using Various Methods

Site	Modification	Method	% Modification
	Deamidation	CEX-HPLC (UV) ¹	~15
		Trypsin pH 6.0 (overnight) map ²	11
		PFE-Trypsin pH 7.5 (overnight) map	12
		PFE-Lys-C/Trypsin pH 8.2 (T=0) map	10
	Deamidation	CEX-HPLC (UV) ¹	~1
		Trypsin pH 6.0 (overnight) map ²	4
		PFE-Trypsin pH 7.5 (overnight) map	44
		PFE-Lys-C/Trypsin pH 8.2 (T=0) map	2
		CEX-HPLC (UV) ¹	~9
	Icomorization	Trypsin pH 6.0 (overnight) map ²	7
	150menzation	PFE-Trypsin pH 7.5 (overnight) map	Not detected 🗙
		PFE-Lys-C/Trypsin pH 8.2 (T=0) map	8

1. R.J. Harris, B. Kabakoff, F.D. et al, J of Chromat. B, Biomedical sciences and applications, 752, 233-245 (**2001**). 2. J.F. Sydow, F. Lipsmeier, V. et al, PLoS One, 9, e100736 (**2014**).

Efficient Separation and ETD Spectra Confirm ID of H12 (D¹⁰²G) and H12 (iso-D¹⁰²G)

Isomerization of Asp-102 led to lower potency (Harris et al, 2001)

Diagnostic ion ($C_3 + 57$) Confirms Presence of isoAsp in Trastuzumab

J.J. Cournoyer, J.L. Pittman, V.B. Ivleva, E. Fallows, L. Waskell, C.E. Costello, P.B. O'Connor, Prot. Sci., 14, 452-463 (2005).

Case Study #1 Peptide Map of Trastuzumab (Herceptin®)

- Trastuzumab (Herceptin®) is useful as a benchmark for peptide map method development
- Artifactual deamidation is a real possibility
 - Some motifs are sensitive to digestion time and pH (ex. N⁵⁵G in H-CDR2)
- Resolution of Asp isomerized peptides (D¹⁰²G vs isoD¹⁰²G) is challenging
 - Peptides have the same mass
 - Can only quantitate Asp/isoAsp if separated

Case Study #2: Deamidation in an IgG4 mAb

L Ch	ain CDR Hotspots	
1	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30
31	NS YG NT FLSXXXXXXXXXXXXXXXXGISNRF	60
61	<u>s</u> xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	90
91	XXX <u>LQGTHQPYT</u> XXXXXXXX	
H Ch	ain CDR Hotspots	
1	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	30
31	<u>NYWIH</u> XXXXXXXXXXXXXXXGINPG NN YATY	60
61	<u>RRKFQG</u> XXXXXXXXXXXXXXXXXXXXXXXXXXXXX	90
91	XXXXXXXEGYG NY GAWFAYXXXXXXXXX	120
121		

Case Study #2: Deamidation in an IgG4 mAb

Three distinct acidic isoforms (~15%)

Acidic fractions collected and characterized for structure/function

Case Study #2: UV Chromatograms of Trypsin Peptide Maps

- CEX-HPLC Fraction A1 and A2 show an increase in H12 deamidation
 Antigon binding impacted A1 observe variant
 - Antigen binding impacted A1 charge variant

Case Study #2: New Peptide Map Column for Enhanced Chromatographic Separation

- IgG4 mAb: H chain deamidation in CDR3
- Localized deamidation site to: EGYGN¹⁰³YGAWFAYWGQGTLVTVSSASTK
- NY site not expected to deamidate (NG, NS, NT, NN)
- Causes loss of target binding

Previous Trypsin Map Waters BEH C18, TFA

New Trypsin Map Waters XSelect XP CSH C18, FA

Case Study #2: Deamidation of an IgG4 mAb

Site	Modification	Modification (total Asp and iso-Asp, %)	CEX Fraction
N ³³ S (L-CDR1)	Deamidation	3.2	A3
N ⁵⁵ N (H-CDR2)	Deamidation	0.1	
N ¹⁰³ Y (H-CDR3)	Deamidation	7.0	A1 and A2

- New HPLC column allows for better separation and accurate quantitation of deamidation
- Detected unexpected N¹⁰³Y deamidation hot spot (beyond NG, NS, NT, and NN)
 - In process of updating software reflect new findings

Case Study #3 Forced Deamidation Study of IgG1 mAb

Case Study #3: Forced Deamidation Study of IgG1 mAb

1DIVMTQTPLSLSVTPGQPASISCRSSQSLV30High level31HSNGNTFLYWYLQKPGQSPQLLIYRVSNRF60Low level	ol (>5%)
31 HSNGNTFLYWYLQKPGQSPQLLIYRVSNRF 60 Low leve	
	el (1-5%)
61 <u>S</u> GVPDRFSGSGSGTDFTLKISRVEAEDVGV 90 Potentia	al (<1%)
91 YYC <u>FQATHVPWT</u> FGGGTKVEIKR	
IgG1 H Chain CDR Hotspots Rel. Abu	Indance
1 QVQLVQSGAEVKKPGASVKVSCKAS <u>GYTFT</u> 30 High lev	el (>5%)
31 <u>GYYIH</u> WVRQAPGQGLEWMG <u>WIYPGNFNT</u> KY 60 Low leve	el (1-5%)
61 <u>NERFKG</u> RVTMTTDTSTSTAYMELRSLRSDD 90 Potentia	al (<1%)
91 TAVYYCAREDGSPYYAMDYWGQGTSVTVSS 120	

Deamidation of Light Chain (L2 peptide with CDR1) ²⁵SSQSLVHSN³³GNTFLYWYLQKPGQSPQ⁵⁰LLIYR⁵⁵

Deamidation of Heavy Chain (H5 with CDR2) ³⁹QAPGQ⁴³GLEWMGWIYPGN⁵⁵FNTK⁵⁹

CID Spectra Showing Deamidation at Asn-55 ³⁹QAPGQGLEWMGWIYPGN⁵⁵FNTK⁵⁹

CID did not provide conclusive evidence for deamidation site

ETD Fragmentation Confirms Deamidation Site at Asn-55 (N⁵⁵F)

BioTherapeutics Pharmaceutical Sciences

Asn Deamidation and Asp Isomerization Results for IgG1 mAb using New Low Artifact Trypsin Map

Site	Modification	Modification (total Asp and iso-Asp, %)			
		Unstressed	Stressed 4 weeks at 25 °C	Stressed 4 weeks at 37 °C	
N ³³ G (L-CDR1)	Deamidation	2.8	12.8	43.0	
N ⁵⁵ F (H-CDR2)	Deamidation	1.0	4.0	12.9	
D ¹⁰⁰ G (H-CDR3)	Isomerization	0.7	1.0	1.7	

- Important to analyze stressed material for hotspots (2.8 to 43.0%)
- Detected unexpected N⁵⁵F deamidation hot spot
- D¹⁰⁰G not a hotspot despite motif and location in H-CDR3

Summary

- New trypsin peptide map-shorter digestion times, efficient enzyme, time-course elements and updated C18 column with formic acid
 - Detects method-induced artifacts
 - Improved resolution of deamidated and isomerized peptides
 - Accurate quantitation of deamidation/isomerization via time course
 - Fragmentation (CID and ETD) determine sites of modification
 - ETD also distinguishes Asp vs iso-Asp
- Deamidation and isomerization hotspots are sequence and location dependent and less predictable in proteins
 - Detected unexpected deamidation hot spots (beyond NG, NS, NT, and NN)
 - N¹⁰³Y in heavy chain CDR3
 - N⁵⁵F in heavy chain CDR2
 - Low and constant level of Gln deamidation (Q⁵⁰L, Q⁴⁰G)

Summary of Hotspots

Case Study 1 Trastuzumab Originator	Case Study 2 IgG4 mAb Ref Material	Case Study 3 IgG1 mAb-stressed Ref Material - Stressed	Rel. Abundance
N ³⁰ T (L-CDR1)	N ³³ S (L-CDR1)	N ³³ G (L-CDR1) N ³³ G (L-CDR1)	High level (>5%)
N ⁵⁵ G (H-CDR2)	N ⁵⁵ N (H-CDR2)	N ⁵⁵ F (H-CDR2) N ⁵⁵ F (H-CDR2)	Low level (1-5%)
D ¹⁰² G (H-CDR3)	N ¹⁰³ Y (H-CDR3)	D ¹⁰⁰ G (H-CDR3) D ¹⁰⁰ G (H-CDR3)	Potential (<1%)

Forced degradation studies help identify potential sequence liabilities

Acknowledgements

Jason Rouse-co-author Elaine Stephens-co-author Michelle English-co-author Shibu Philip-co-author

Robert Kutlik (software)

Kristin Boggio Heather DeGruttola Jennifer Ide Natalia Kozlova Mellisa Ly Andrew Saati Roger Theberge Matt Thompson Ying Zhang

WORLDWIDE RESEARCH & DEVELOPMENT BioTherapeutics Pharmaceutical Sciences Tao He Eric Sousa Yan Zhang Laura Lin

Bekah Ward Neil Steinmeyer Tom Porter Meg Ruesch