Mass Spectrometry Enables More Definitive Process & Product Development Towards Well-Characterized Biotherapeutics:

A Personal Account

Jason C. Rouse Analytical Research & Development Biotherapeutics Pharmaceutical Sciences Pfizer, Inc., Andover, MA

January 25, 2022

2022 CASSS WCBP Conference - 25th Anniversary Washington D.C.

Modern Mass Spectrometry (MS) Performance (with Research Grade Instruments)

- At least 40000 FWHM resolution w/ fast acquisition rates
- <2-5 ppm mass accuracy: both MS and MS/MS modes
- Low attomole sensitivity (6 million 50-kDa protein molecules)
- Five orders of magnitude dynamic range
- 50-20,000 m/z mass range (and higher)
- Multiple modes of ion fragmentation (CID, HCD, ETD, EThcD)

The Rise of Mass Spectrometry in Biotech

Enduring MS-based Methods for Heightened Product Characterization

Contemporary MS-based Methods for Heightened Process Characterization

MS Characterization Roadmap Supporting Product & Process Development

Molecular Design (Team Supply 0)	Early Dev. Material (Team Supplies 1 & 2)	Pilot Manufacturing	Phase I Clinical Manufacturing		
 Molecular assessment Calculate molecular properties In silico hotspot prediction Hotspot analysis on thermally stressed material by LC-MS/MS 	 Product characterization Intact mass, subunit mass, reduced / non-reduced peptide maps, N-glycan profiling Process characterization Trisulfide analysis (intact mass) LC-MS/MS – HCP analysis 	 RM characterization Intact mass, subunit mass, reduced / non-reduced peptide maps, N-glycan profiling Process characterization Trisulfide analysis (intact mass) LC-MS/MS – misincorporation 	 IND authoring Off-critical path LC-MS/MS – sequence variant analysis (max cell age) Comprehensive PQA report 		
Make MAM workbook Phase IIa (Commercial Process Dev.	 MAM on stability sample sets Method dev. for new modalities Phase IIb (Process Nomination) 	analysis LC-MS/MS – HCP analysis Phase III (Process Validation)	Multi-attribute method (MAM) Liquid chromatography-tandem mass spectrometry (LC-MS/MS) Host-cell protein (HCP) BLA Submission		
 Process characterization Trisulfide analysis (intact mass LC-MS/MS – misincorporation LC-MS/MS – HCP analysis Comparability & MAM 	Characterization method qualification as needed	 Primary RM characterization Forced degradation Comparability Process characterization 	 BLA authoring Reference material (RM) Investigational New Drug (IND) Product quality attribute (PQA) Biologics License Application (BLA) 		
Biotherapeutics Pharmaceut	ical Sciences – Analytical Research & Development	 LC-MS/MS – HCP analysis LC-MS/MS – sequence variant a 	nalysis (max cell age) 6		

Timeline of CASSS Symposia and MS Topics

CASSS is at the forefront for integrating the MS community with the larger biotherapeutics development & regulation communities to discuss innovative approaches and share experiences & best practices

1 st CASSS WCBP Symposium (January 1997)		1 st CASSS Mass Spec Symposium (September 2004)	ASMS 1 st Biotherapeutics Session (June 2009)	21 st CASSS WCBP Symposium (January 2017)		
1997	2000		2010	2020 2022		
Agenda (characterization) MS - Carbohydrate analysis MS - Posttranslational modifications MS - Sequencing proteins/glycans		Agenda Intact protein analysis Antibody characterization MS in QC	Agenda IdeS Enzyme & LC/MS New LC/UHR ESI-QTOF MS Antibody characterization Peptide sequencing Peptide mapping	Agenda (characterization) Multi-attribute Method (LC/MS) Sequence variants Biosimilars High-throughput LC/MS for PQAs		

CASSS Well-Characterized Biotechnology Products (WCBP) Symposium: Overview – Past, Present & Future; Brian Nunnally, May 2015

Genetics 🌄 Institute circa 1993

- Structural Biochemistry MS subgroup
 - Hubie Scoble, Director (Sanofi, consultant)
 - Steve Martin, Manager (Waters)
 - James Vath

(Cure Ventures)

Wen Yu

- (AstraZeneca)
- Mike Huberty

JEOL HX-110/ HX-110 4-sector mass spectrometer (equipped w/ fast-atom bombardment [FAB])

- My Postdoc Research Projects
 - Optimized continuous-flow FAB on JEOL HX-110/ HX-110 4-sector mass spectrometer for peptides
 - Benchmarked peptide ion fragmentation by MALDI-PSD to high and low energy CAD on JEOL HX-110/HX-110 4-sector mass spectrometer
 - Developed MALDI cleanup methods for analysis of released N-linked glycans
 - Elucidated N-linked glycan isomers by MALDI, PSD and glycosidases

Rouse, Camphausen, Cornell, Kitchen, Yu, Hardy, Harris, and Scoble, ASMS Conference 1998.

Monitoring PSGL-1 "Glyco-Engineering" by MALDI-TOF MS (1994)

Profiling EndoH-released N-glycans by HPAEC-PED (1995)

MALDI-TOF MS Analysis of rFVIII HPAEC Fractions (released EndoH N-glycans)

Sequential Glycosidase Digestion of Unknown Fraction 12

Modern N-Glycan Profiling by LC-FLR/MS: Recombinant Factor IX (rFIX)

In 2000, the ESI-Quadrupole Time-of-Flight (Q-TOF) Mass Spectrometer Arrives

Biotherapeutics Pharmaceutical Sciences – Analytical Research & Development

Adapted from schematic of O-Tof-2 (Micromass MS Technologies, Waters Corp.)

Rouse, Abbatiello, Hag, Marzilli, Nemeth-Cawley, Patel, Rathore, Jankowski, Porter, & Scoble, ACS NERM 2001, University of NH

Comparison of ESI-QTOF & MALDI-TOF MS for Covalent rhBMP-2 Dimer

Rouse, Abbatiello, Haq, Marzilli, Nemeth-Cawley, Patel, Rathore, Jankowski, Porter, & Scoble, ACS NERM 2001, University of NH

Pfizer

rhBMP-2 Comparability Study: Phenyl RP-HPLC-UV / ESI QTOF MS

Rouse, Abbatiello, Haq, Marzilli, Nemeth-Cawley, Patel, Rathore, Jankowski, Porter, & Scoble, ACS NERM 2001, University of NH

Pfizer

rhBMP-2 Comparability Study: Zero-Charge Mass Spectra

The mass spectra of intact rhBMP-2 indicated the 3 processes produced comparable DS (according to predetermined acceptance criteria):

- \checkmark Mass differences between the same isoforms were < 1.3 Da
- ✓ All isoform masses were < 1.6 Da</p> (50 ppm) from theoretical values
- \checkmark Similar isoform distributions were observed (slight redistribution in process 2)
- \checkmark No new isoforms were detected

All routine testing and characterization studies together supported structural and functional comparability of rhBMP-2 DS

Rouse, Abbatiello, Hag, Marzilli, Nemeth-Cawley, Patel, Rathore, Jankowski, Porter, & Scoble, ACS NERM 2001, University of NH

Derzi et al. Adv. Ther. (2016) 33:1964-1982.

Werle et al. Molecular Therapy: Methods & Clin. Dev. 2021, 23, 254.

0.58

Chemical Modifications in Complementarity-Determining Regions (CDRs)

Elucidated & Cataloged CDR Sequence Instabilities across 95 mAbs

...provided enhanced S-F & molecular design knowledge, and laid groundwork for in silico hotspot prediction

Lisa Marzilli, Jason Rouse, and Pfizer Structural & Computational Biology Team Trastuzumab Light Chain CDR-1 CDRL3 Trastuzumab CDRL1 CDRH3 (4HKZ) **D**²⁸**V** CDRH2 CDRL2 L-CDR1 CDRH1 Variable Region N30. Light Heavy CH C Chain Chain Hotspot Database **D**²⁸V N³⁰T (L-CDR1) C **Trastuzumab Material** L-CDR1) Asn / Asp / isoAsp / Asu T=0 control ND 88.8 / 9.7 / 0.8 / 0.7 4w, 40C, Tris pH 7.5 ND 28.2 / 69.8 / 0.6 / 1.4 4w, 40C, His pH 5.8 ND 75.7 / 12.2 / 2.9 / 9.2 mAb Antigen Binding Fragment 4w, 40C, Glu pH 4.5 ND 89.2 / 2.7 / 2.3 / 5.8 (Fab) Region Harris et al. 2001 (%) ~15% (CEX-HPLC) ---Pfizer **Biotherapeutics Pharmaceutical Sciences – Analytical Research & Development** Sydow et al. 2014 (%) $11\% \rightarrow 24\%$ (His, pH 6) ---

Elaine Stephens, Roger Theberge, Leah Wang, Mellisa Ly, Peilu Liu, Dennis Gessmann,

New Structure-based mAb CDR "Hotspot Prediction" Algorithm

(T=0)

hzer

Motif-based prediction (91% false discovery rate)

rastuzumab Heavy Chain	
1 evqlvesggglvqpggslrlscaas <u>gfnikdtyih</u> wvrqapgkglewva <u>riypt<mark>ng</mark>ytry</u>	60
61 <u>ads</u> vkgrftisadtsk nt aylq mns lraedtavyycsr <mark>wggdgfyamdyw</mark> gqgtlvtvss	120
wastus unab Lisht Chain	

Trastuzumab Light Chain

1DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSASFLYSGVPS 60 61RFSGSRSGTDFTLTISSLQPEDFATYYCQQHYTTPPTFGQGTKVEIKRTVAAPSVFIFPP 107

Structure-based prediction (96% accuracy rate; 68% false discovery rate)

+	mAb	CDR	Site	Motif	%ASA (x)	%ASA (x+1)	B-turn Type	B-turn Position	Sec. Structure	Predicted Hotspot >5%	Exp. Hotspot Level (%) †
	Trastuzumab	L-CDR1	28	DV	66.8	0			Loop	No	ND
	(4hkz)		30	NT	70.6	48.5	II'	2&3	Loop	Investigate	71.8
		H-CDR1	28	NI	84.1	1.0	Ι	1&2	Loop	No	0.2
			31	DT	78.7	3.5	I	3&4	Helix	No	ND
		H-CDR2	55	NG	54.8	68.6	I	4&	Loop	Investigate	7.3
			62	DS	92.1	64.3	I	2&3	Loop	Investigate	0.2
		H-CDR3	99	W	18.8				Sheet	No	0.6
			102	DG	83.0	84.0	ľ	2&3	Loop	Investigate	43.3
			107	М	0.7				Loop	No	0.6
			108	DY	0.2	34.5			Loop	No	ND

Provides hotspot access to more colleagues ● Speeds-up hotspot analysis ● Create MAM workbooks at risk ● Cross-check MS assignments

Biotherapeutics Pharmaceutical Sciences – Analytical Research & Development

Peilu Liu, Victor Beaumont, Omar Davulcu, Jason Rouse, and Pfizer Structural & Computational Biology Team

Important Mass Spectrometer Characteristics & New Directions

Research-grade mass spectrometers are defined by ultimate performance such as sensitivity, resolution, and mass accuracy

New "Smart" UHPLC mass detectors are being developed with improved "ease-of-use" for hardware/software operation

✓ Opens-up LC/MS access to more colleagues (w/ more manageable training) for supporting routine MS workflows!

•

Biotherapeutics Pharmaceutical Sciences – Analytical Research & Development

Modern View of Mass Spectrometry in Process & Product Dev. Labs

Summary

- MS has evolved significantly over 25+ years, providing more in-depth, high-quality information faster
 - MS is the analytical characterization workhorse for definitive elucidation of primary structure & modifications
- MS is a decisive characterization tool during molecular assessment and early process development
 - If needed, minor improvements to the platform process can occur in "real-time" without affecting timelines
- MS is an essential element of commercial process dev. and comparability (similarity) exercises
 - Rapidly assess effect of manufacturing improvements on product quality attributes & batch consistency
 - Directly visualize the intact protein isoforms that constitute pre-change & post-change comparability batches
- The pace and breadth of biotherapeutics process & product development is increasing every year!
 - Demand is shifting to smaller, more reliable, easier-to-use instruments with automatic calibration & tuning
 - Automated sample preparation/data analysis, and in silico prediction tools, will improve access & productivity
 - Continued quantum leaps in capability, performance & ease-of-use from our vendor partners are essential!

Acknowledgements

Mass Spectrometry and Biophysical Characterization (MSBC)

- John Allison
- Jack T. Watson Anne Marie Strang
- Hubie Scoble
- Steve Martin
- Jim Vath

Pfizer

- Wen Yu
- Marta Czupryn
 - Tom Porter
 - Mike Jankowski

Biotherapeutics Pharmaceutical Sciences – Analytical Research & Development

- Himakshi Patel
- Suman Shanker
- Smita Karnik
- Lisa Marzilli
- Meg Ruesch

- Karen Bertani
- Renee Olson
- Carolyn Slade
- Stephanie Flores
- Rohin Mhatre
- James Carroll

- Victor Fursey
- Robin Andreotti
- Weibin Chen
- Gary Valaskovic
- Chris Yu
- Eric Carlson

- Drake Zhang
- Mark Rogers
- Chris Ziegenfuss
- Rich Rogers
- Jonathan Josephs
- ...and many more

