

Antibody Digestion	Proteomics	Glycan Profiling
FabALACTICA	GingisREX®	FucosEXO"
FabDELLO" Viji	Antibody Deglycosylation	GalactEXO®
FabRICATOR®	GlycINATOR®	GalNAcEXO"
FabRICATOR°Z	IgGZERO®	OglyZO R °
FabULOUS"	Antibody Conjugation	OmniGLYZOR"
GingisKHAN®	GlyCLICK°	OpeRATOR*
GlySERIAS"	TransGLYCIT [™]	PNGase F
	Affinity Purification	SialEXO°
	GlycOCATCH®	

Middle-level LC-MS Analysis

Fabricator®

- One specific digestion site
- Digests human IgG₁₋₄
- No over-digestion
- No optimization needed

- 30 min at 37°C
- pH 5.5 8.0
- Physiological buffers
- Platform method

Analysis of Many CQAs by Middle-level LC-MS

- Analysis of several different CQAs in one analysis
- A robust assay without the need for optimization

FabRICATOR-HPLC Workflow

FabALACTICA®

- Human IgG1 specific cysteine protease
- Digests the upper hinge
- Generating intact Fc and Fab fragments

- Robust protocol
- No over-digestion
- No reducing agents

Middle-up Analysis of mAb Disulfide Bridges

- Combined digestion FabALACTICA (IgdE) & FabRICATOR (IdeS)
- Separation on di-phenyl column
- Monitor free sulfhydryls without labeling
- Applicable to any IgG1

Faid, V. et al., 2017. Journal of Pharmaceutical and Biomedical Analysis, 149, pp.541–546.

FabDELLO

- Protease with digestion of human
 IgG1 at a single site above the hinge
- No need for reducing conditions
- 2 h incubation at 37°C

- Active on mAbs with mutated hinge regions, such as LALA antibodies
- Generates intact Fab and Fc fragments

Characterization of Bispecific Antibodies

IgG Proteases Comparison

GlySERIAS™

- Unique enzyme digesting flexible linkers in fusion proteins.
- Active on GS linkers such as G₄S and G_xS_y linkers, and polyglycine (G) linkers.
- 1 hour reaction (optimization for individual proteins may be required.

- No reducing agent or co-factor needed.
- Improves resolution and reduces complexity of fusion protein analysis.
- A middle-level approach for characterization of fusion protein components.

Digestion of a GS-linked Fusion Protein

GingisREX®

Arginine Specific Protease

- Cysteine protease
- Specific activity on Arg-X residues
- Active on Arg-Pro linkages

- Active in 6M urea
- pH 5.0-9.0
- Inhibited by guanidine-HCl

Arg

Peptide Mapping of Oxidized Insulin β -chain

PEPTIDE NO.	AMINO ACID SEQUENCE
Intact protein	FVNQHLCGSHLVEALYLVCGERGFFYTPKA
1	GFFYTPKA
2	FVNQHLCGSHLVEALYLVCGER
3	GFFYTP <mark>K</mark>
4	FVNQHLCGSH
5	LVEALYLVCGER + Na

Sequences of oxidized insulin β -chain digested by GingisREX or Arg-C. Green indicates arginine residues and red indicates lysine residues.

GlycINATOR®

- GlycINATOR is an IgG specific endoglycosidase
- Removes all glycoforms of IgG
- Specific for the Fc-glycans
- 30 min incubation at 37°C

- Glycan removal abolishes ADCC
- Enables rapid analysis of afucosylation
- Native reduction of sample complexity
- Enhanced sensitivity in oxidation or glycation workflows

Afucosylation Assay

- Core afucosylation
- N-glyco occupancy
- High-throughput analysis
- Cell line screening
- Process development

Liu, S. & Zang, L., 2016. Analytical Biochemistry, pp.1–10.

OpeRATOR®

O-glycoprotease from A. muciniphila

- O-glycoprotein specific protease
- Hydrolyzes glycoproteins N-terminally to the O-glycosylated serine or threonine residues
- No activity on N-glycosylation sites

- Significantly reduced activity on sialylated O-glycosylation sites
- A sialidase (SialEXO) is included with OpeRATOR

Mapping *O*-glycosylation sites in etanercept

- All O-glycosylation sites of etanercept could be identified
- No enrichment needed
- Site-specific mapping without ETD fragmentation

OmniGLYZOR™

- Contains a mix of immobilized enzymes for fastand efficient removal of N- and simple mucintype O-glycans (mono- and disially core 1 and Tn antigen).
- Activities included: PNGase F, O-glycosidase, sialidase, α -GalNAcase.
- 1-4 h workflow

- Ready-to-use spin column format no enzyme interfering in the analysis.
- Compatible with LC-MS.
- RapiGest™* included

Efficient Removal of Glycans from Etanercept and EPO

Tools for Characterization of Complex Glycoproteins G∃NOVIS

Resources – www.genovis.com

SmartEnzymes Applications

Subunit Analysis

Oxidation

Fc-glycan Analysis

FabRICATOR MagIC produce F(ab)2 subunits in less than 30 minutes

OpeRATOR changes the game in the field of O-linked glycoproteomics

Bastiaan Duivelshof University of

Generating site-specific ADCs

Dan Bach Symphogen A/S

Hanieh Khalili University of East London

Antibody mimetics generation using GingisKHAN

FabRICATOR for Intact Analysis of Biologics

Biotechnologies

Valegh Faid

FabALACTICA in non-reducing study of antibody disulphides

Mass Spectrometric Analysis

Sialic Acid Linkage Analysis **Unmasking Charge Variants**

