Protein conformation in amorphous solids by hydrogen-deuterium exchange

International Symposium on the Higher Order Structure of Protein Therapeutics
Biological Consequences of HOS Session
April 4, 2022 (virtual)

Elizabeth M. Topp, Ph.D.
Professor, Dept. of Industrial and Physical Pharmacy, Purdue University
Chief Scientific Officer, National Institute for Bioprocessing Research and Training (NIBRT), Dublin, Ireland
Acknowledgements

Purdue University (current)
- Dr. Karthik Chandrababu
- Yuan Chen
- Iris Cho
- Harshil Renawala
- Raj Kammari
- Lia Bersin
- Rishabh Tukra
- Andrew Karaki

Purdue University (past)
- Dr. Andreas Sophocleous
- Dr. Balakrishnan S. Moorthy

Roche / Genentech
- Dr. Andrea Allmendinger
- Dr. Dan Zarraga
- Dr. Ben Walters
- Dr. Lokesh Kumar
- Dr. Kathleen Abadie

AbbVie
- Dr. Steve Schultz
- Ms. Sherry Kim

Financial support: NIH RO1 R01GM085293, PhRMA Foundation Fellowship (AS), Purdue University, Roche/Genentech, Inc., NIST AMTech, NIIMBL
Proteins in the solid state

- Protein drugs are an important part of the biopharmaceutical industry.
- Over the past decade, ~40% of newly approved protein drugs have been marketed as solids.
- Maintaining HOS in the solid state is important for storage stability.
- But methods to measure HOS in solids are few and low-resolution.
Hydrogen-deuterium exchange (HDX)

H/D Exchange

Dynamic regions exchange rapidly

Structured regions exchange slowly

Quench and Digest

Quenching locks in deuterium and unfolds the protein

Digestion localizes the information

MS analysis

Quench pH 2.5 0 °C

http://mvsc.ku.edu/content/hydrogen-deuterium-exchange-mass-spectrometry
Solid-state HDX (ssHDX-MS)

Protein lyophilized with excipients

Solid-State HDX

Reconstitute in quench buffer (5°C, pH 2.5)

Pepsin digestion

Protein structure in amorphous solids?

ESI-MS

Intensity

m/z
Effect of RH on deuterium uptake

Intact protein: *Myoglobin/mannitol 1:1, 5 °C*
Effect of RH on deuterium uptake

Intact protein: Myoglobin / sucrose 1:1, 5 °C
mAb formulations
Can ssHDX be applied to mAbs?

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Basic composition</th>
<th>Mannitol (mg/mL)</th>
<th>Sucrose (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>-</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>F2</td>
<td>50 mg/mL mAb1 in buffer at pH 6.0</td>
<td>-</td>
<td>80</td>
</tr>
<tr>
<td>F3</td>
<td>32</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>53</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

Knowing only this, rank order the storage stability of the four formulations using ssHDX-MS.
mAb stability and ssHDX-MS

(A) Stored @ 5°C, 960 days

(B) Stored @ 25°C, 960 days

(C) Stored @ 40°C, 960 days

(D) Stored @ 50°C, 180 days
mAb stability and solid properties

(A) FTIR band intensity

\[
y = 20323x + 176.55 \\
R^2 = 0.8576
\]

(B) Sucrose content

\[
y = -0.2723x + 26.606 \\
R^2 = 0.7893
\]

(C) Moisture content

\[
y = 25.108x - 2.776 \\
R^2 = 0.6021
\]

(D) Glass transition, Tg

\[
y = -0.6161x + 63.03 \\
R^2 = 0.2099
\]
Process effects

Native

Native, deuterated

Unfolded, deuterated

Lyophilized, uncontrolled nucleation
Lyophilized, controlled nucleation
Lyophilized, uncontrolled nucleation with hydration
Spray dried
Poly-D,L-alanine (PDLA)

• Unstructured poly-amino acid
• Polydisperse mixture – oligomers with 15-34 aa selected
• Formulated with sucrose, trehalose, no excipient, mannitol, NaCl, Gdn HCl
• Lyophilized solids and solution controls

https://www.scbt.com/scbt/product/poly-dl-alanine-25281-63-4
Solution HDX-MS of PDLA

- Rapid deuterium incorporation to ~ 85% of theoretical maximum
- Independent of excipient type
- Independent of PLDA MW
ssHDX-MS of PDLA

In ssHDX-MS, protection from exchange occurs even in the absence of higher order structure.

- Deuterium incorporation plateaus in 50-150 hrs (compare solution)
- Rate and extent depend on RH and excipient type
- Independent of PLDA MW
Summary

- ssHDX-MS interrogates the H-bond network of proteins in solid powders, providing information on HOS and matrix interactions with peptide-level resolution.
- For a given protein, ssHDX-MS kinetics are affected by excipient type and amount, RH in D₂O, temperature and processing method.
- The extent of deuterium incorporation (D_{max}) is correlated with aggregation on storage.
- Studies with unstructured peptides (PDLA) show protection from exchange in ssHDX-MS, in the absence of structure.