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• Structural biology is the backbone of our current 
molecular understanding of biology

• Numerous systems are highly challenging to study 
using traditional structural biology techniques

• Dynamic systems
• Heterogeneous systems
• Large systems
• Limited sample amounts

• Protein-carbohydrate complexes often fit into 
several of these categories simultaneously

• Flexible
• Dynamic oligomerization
• Heterogeneous protein and/or carbohydrate 

ligand
• Very large complexes

• The Sharp Lab focuses on developing and applying 
new tools to address these challenges in structural 
biology

Wang X. et al (2011) Structure 19: 1138
Wang X. et al. (2013) Progress in Molecular Biology and Translational Science

Li Z. et al (2015) J Biol Chem 290: 10729
Zong C. et al. (2016) J Am Chem Soc 138: 13059

The Sharp Group
Developing new tools to address challenging problems in structural 
biology



• Rate of oxidation appears to 
primarily be a function of two 
factors
• Chemical nature of oxidized 

residue
• Average accessibility of oxidation 

target to the hydroxyl radical over 
the time of radical exposure

• General inherent reaction rates: 
sulfur-containing > aromatic > 
aliphatic > charged > polar > Ala 
> Gly

• Sequence context can influence 
inherent reactivity, especially 
for less reactive amino acids

• Changes in reaction rates in the 
same sequence reflects changes 
in average solvent accessibility

Chance, Biochem Biophys Res Commun
287,614 (2001)

[urea, M]

Normalized Reactivity to Hydroxyl Radical

Xie et al, Sci Rep 7,4552 (2017)

Foundation of Hydroxyl Radical Protein Footprinting
Why does it work?
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• Definition of protection factor (apparent oxidation rate 
normalized by the free amino acid reactivity with ·OH); 
correlation of protection factor with structural contacts and 
fractional SASA; demonstrated on proteins of known 
structure

• Observation that normalization by free amino acid 
reactivity is more accurate for the more reactive amino 
acids; development of denatured:native comparisons for 
determination of inherent reactivity rates; generation of 
empirical conversion factors to determine structure based 
on SASA; demonstrated ability to use SASA to select 
accurate homology models; examined MD simulations to 
include flexibility; demonstrated on proteins of known 
structure

• Found that most reactive amino acids (W,Y,F,H,L) gave most 
robust results; incorporated dynamics to improve 
predictions; used optimized conical neighbor count for 
cheap and robust correlations with HR-HRPF data; 
demonstrated on proteins of known structure

Protein Structure Determination by HR-HRPF: Highlights

Huang et al (2015), Biophys J 108: 107; Kaur et al (2015), Mol Cell Prot 14: 1159

Xie et al (2017), Sci Rep 7: 4552

Aprahamian et al (2018), Anal Chem 90: 7721; Biehn and Lindert (2021), 
Nat Commun 12: 341



• NRG1 is a signaling glycoprotein that interacts with 
tyrosine kinases

• Plays a key role in neuronal and cardiac 
development, regulation of synaptic plasticity

• Implicated in diseases including schizophrenia and 
some forms of cancer

• Many isoforms, including both soluble and 
membrane-bound

• Ig-like domain of NRG1 binds to heparan sulfate 
proteoglycans in the extracellular matrix

• Structure is currently unknown, and no near 
homologs of known structure

Immunoglobulin-like domain of human neuregulin 1
NRG1-Ig

AlphaFold model of full-length hNRG1
https://alphafold.ebi.ac.uk/entry/Q02297



Heterologous expression 
and purification of NRG-

Ig

HR-HRPF by multi-dose FPOP and LC-
ETD MS/MS

Development and scoring of models 
by Rosetta with hrf_dynamics and 

mover dynamics

Multidimensional heteronuclear NMR

Resonance assignment and solution 
structure by NOE data

Comparison of independent models

Sharp and 
Lindert Groups

Prestegard 
Group



• HR-HRPF oxidation was measured 
at four different effective radical 
doses

• Reactivity measured by the slope 
of the regression of these data (b 
= 0)

• Reactivity measured for 20 amino 
acids in 118 amino acid construct

• R2 of regression > 0.9 for all amino 
acids measured (mean R2 = 0.971) 

• Six amino acids used for 
hrf_dynamics scoring (W,Y,F,H,L)

Multi-Dose FPOP for HR-HRPF analysis
Measuring reactivity by FPOP
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Rosetta with hrf_dynamics and mover
Calculated natural log of the protection factor (lnPF) using 

established relative intrinsic reactivity values and slopeN values 

from Sharp group

Generated 20,000 ab initio models + scored with Rosetta’s 

score function named Ref15

Scored models with our HRPF-guided score term, 

hrf_dynamics, then determined total score and identified top 20 

scoring models

Generated 30 mover models for each of top 20 scoring 

models. Scored mover models with both Ref15 + hrf_dynamics

and identified best scoring model from 20,600 models



Multidimensional NMR model
HSQC assignment



Comparison of HR-HRPF model and NMR structure

• After both groups 
independently determined 
their best model, groups 
shared information

• Models were judged by 
backbone RMSD from all amino 
acids, with the NMR model 
presumed to be accurate

Backbone RMSD = 1.6 Å

HR-HRPF

NMR



HR-HRPF correlation with conical neighbor count
Were data as reliable as those generated using proteins of known structure?

• Overlay of NRG1 data (cyan) 
with analysis of previously 
published data from Sharp 
(FPOP) and Kiselar/Chance 
(X-ray synchrotron) groups 
using proteins of known 
structure 

• NRG1 data was comparably 
reliable to previously 
generated data

• No obvious evidence of bias 
in prior result reporting



Improvements over Rosetta modeling alone

• Addition of hrf_dynamics term alone showed little improvement over 
Rosetta models alone

• Score of best model improved, but accuracy of best model unchanged

• Inclusion of mover models scored with the hrf_dynamics term gave great 
improvement in robustness of modeling



RMSD distribution of top 250 scoring models
• Without hrf_dynamics

and mover models, the 
top 250 scoring Rosetta 
models are evenly 
distributed between ~2 
- 14 Å RMSD

• Addition of 
hrf_dynamics scoring 
term and mover 
models causes models 
to cluster around ~1.5 
– 4.5 Å, with most 
below 3.5 Å RMSD



Conclusions

• First determination of unknown structure by 
covalent labeling mass spectrometry

• Determination of the structure by HR-HRPF and 
Rosetta modeling required much less sample, 
less time and no isotopic labeling

• Opportunities for use of HRPF-based modeling 
for larger multi-domain proteins of interest

• Work ongoing to investigate methods for 
including data from less reactive amino acids
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