Five Computational Developability Guidelines for Therapeutic Antibody Profiling

Matthew Raybould
Oxford Protein Informatics Group
University of Oxford

Next-Generation Investigator Session, HOS2021
Common Antibody Developability Issues

- Many different *in vitro* assays to test for each of these issues
- However, the time/quantity of monoclonal antibody (mAb) needed to experimentally test for each of these is often prohibitive in early-stage development
- Therefore, desire to generate *in silico* assays that can rapidly filter out mAb drug candidates with poor developability

in silico developability assessment tools (2018)

1. Various algorithms for “humanness” assessment via comparison to natural antibody sequences
2. Statistically-fit predictors of *in vitro* assay values (e.g. CamSol, Developability Index, FvCSP) or sites of post-translational modification

No publicly-available method that captured general developability
The Therapeutic Antibody Profiler:
A structure-based, *in silico* method for rapidly detecting mAbs with poor developability

Assumptions
- Many instances of poor developability are caused by the chemical properties of a region of the antibody surface.
- The most variable region between antibodies is the Fv region, so we analyse this region alone.
- The best way to measure Fv surface properties is *via* a structural representation.
- A set of these properties may offer some predictive power to identify more “drug-like” antibodies, *cf.* Lipinski rules.
- We assume that therapeutics that have reached Phase-II of clinical trials have acceptable developability.

Requirements
- We must be able to identify poor developability mAbs in a high-throughput manner.
- This necessitates using homology models over *ab initio* models or crystal structures.
Five properties:

1. CDRH3 or Total CDR length [aggregation, flexibility, topology]
2. Patches of Surface Hydrophobicity (PSH) across the CDR Vicinity [aggregation, viscosity, polyspecificity]
3. Patches of Surface Positive Charge (PPC) across the CDR Vicinity [poor expression, aggregation, viscosity, polyspecificity]
4. Patches of Surface Negative Charge (PNC) across the CDR Vicinity [poor expression, aggregation, viscosity, polyspecificity]
5. Structural Fv Charge Symmetry Parameter [aggregation, viscosity]

Datasets:

- 137 Post-Phase I Therapeutic Models
- 14k Representative Human Antibody Models
- 2 Datasets of MedImmune Developability Failures

Sets the acceptable bounds of the five properties Provides a “natural antibody comparison” Used to validate that we can selectively highlight mAbs with developability issues

Comparisons: Therapeutics vs. Human Antibodies

- Therapeutics tend to have shorter CDRH3s and smaller patches of surface hydrophobicity than human antibodies
Comparisons: Therapeutics vs. Human Antibodies

Patches of Surface Positive Charge (PPC)

Patches of Surface Negative Charge (PNC)

\[\sum_{R1 \neq R2} \left| Q(R1) \right| \left| Q(R2) \right| / \gamma_{12}^2 \]

Blue: Therapeutic Antibody Models
Red: Human Antibody Models

- Therapeutics and human Abs have similar sizes of positive charge and negative charge patches
Comparisons: Therapeutics vs. Human Antibodies

Structural Fv Charge Symmetry Parameter (SFvCSP)

\[
\begin{bmatrix}
\sum_{R_H} Q(R_H) \\
\sum_{R_L} Q(R_L)
\end{bmatrix}
\]

Blue: Therapeutic Antibody Models
Red: Human Antibody Models

- Both therapeutic and human antibodies have an aversion to strongly oppositely-charged VH and VL chains
Validation

- Found a further 105 post-Phase I therapeutic sequences, as “developable antibodies”
- Only 8/105 were assigned by TAP to have a property outside the existing distributions. Most (except PPC) were minorly adjusted:

<table>
<thead>
<tr>
<th>Property</th>
<th>Red Threshold (137 Phase-II+ therapeutics)</th>
<th>Red Threshold (242 Phase-II+ therapeutics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CDR Length (Lower)</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>Total CDR Length (Upper)</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>PSH (Lower)</td>
<td>85.64</td>
<td>83.34</td>
</tr>
<tr>
<td>PSH (Upper)</td>
<td>168.30</td>
<td>173.85</td>
</tr>
<tr>
<td>PPC</td>
<td>1.51</td>
<td>3.16</td>
</tr>
<tr>
<td>PNC</td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td>SFvCSP</td>
<td>-19.50</td>
<td>-20.40</td>
</tr>
</tbody>
</table>
Validation

M-1912 aggregated uncontrollably during development, and exhibited extremely high values in our CDR Vicinity PSH metric. **M-1912STT** resolved the issue.

A001 had prohibitively poor expression levels, and exhibited extremely high values in our CDR Vicinity PNC metric. **A-DDEN** fixed the issue (backbone engineering).
TAP Developability Guidelines

Values based on 242 clinical-stage therapeutic antibodies as of Feb’ 2019

<table>
<thead>
<tr>
<th>Metric</th>
<th>(Bottom 5%/Top 5%)</th>
<th>(Below/Above)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CDR Length</td>
<td>Amber Flag Region</td>
<td>Red Flag Region</td>
</tr>
<tr>
<td></td>
<td>39 ≤ L ≤ 43</td>
<td>L < 39</td>
</tr>
<tr>
<td></td>
<td>54 ≤ L ≤ 60</td>
<td>L > 60</td>
</tr>
<tr>
<td>PSH, CDR Vicinity</td>
<td>83.84 ≤ PSH ≤ 100.71</td>
<td>PSH < 83.84</td>
</tr>
<tr>
<td></td>
<td>156.200 ≤ PSH ≤ 173.850</td>
<td>PSH > 173.850</td>
</tr>
<tr>
<td>PPC, CDR Vicinity</td>
<td>1.25 ≤ PPC ≤ 3.16</td>
<td>PPC > 3.16</td>
</tr>
<tr>
<td>PNC, CDR Vicinity</td>
<td>1.84 ≤ PNC ≤ 3.50</td>
<td>PNC > 3.50</td>
</tr>
<tr>
<td>SFvCSP</td>
<td>-20.40 ≤ SFvCSP ≤ -6.30</td>
<td>SFvCSP < -20.40</td>
</tr>
</tbody>
</table>

NB: Metric values for therapeutics can change as model quality improves

These metrics could be rapidly calculated:

- During early-stage discovery
- During in silico affinity maturation

to help select mAbs more amenable to therapeutic development
Notes

• The TAP thresholds are now set by c. 400 CSTs in Phase-II+ development. We actively track these in Thera-SAbDab (http://opig.stats.ox.ac.uk/webapps/therasabdab). Thresholds have proven robust to the addition of more data.

• Typical runtime for TAP is < 30s/antibody on a single core (if all loops are homology-modellable)

• The TAP metrics were chosen to be developability-linked and interpretable. With sufficient “negative” data, they could be more systematically derived. As could the amber/red threshold percentile values

• The TAP metrics are guidelines, not strict rules. They could change over time with advances in process development

• These principles could be extended to other classes of protein therapeutics

The Therapeutic Antibody Profiler is described in our paper in PNAS¹

Software Availability

- Free OPIG Webserver
 (http://www.opig.stats.ox.ac.uk/webapps/tap)

If data is IP-sensitive...

- Vagrant VirtualBox
- Coming Soon: Singularity Container

enquiries to: opig@stats.ox.ac.uk
Acknowledgements

With special thanks to my supervisors:
Dr Claire Marks (Oxford), Dr Bruck Taddese (AZ), Dr Alan Lewis (GSK), Dr Alex Bujotzek (Roche), Dr Jiye Shi (UCB), Prof Charlotte Deane (Oxford)

And to my DPhil funders: EPSRC, MRC, the Systems Approaches to Biomedical Sciences CDT (Oxford) & partner companies

And to the organisers of CASSS HOS2021 for inviting me to speak as a “Next-Generation Investigator”
Supplementary Slides
Making a set of “representative human antibody” models

Designed to capture as much sequence & structural diversity as possible within the “modellable space”

Protocol used in TAP metric comparison described in PNAS 116(10):4025-4030

Splitting Therapeutics by Kappa/Lambda LCs

Models containing Lambda light chains seemed inherently less ‘developable’ than those containing kappa light chains (90% of CSTs involve kappa light chains).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>TAP Metric</th>
<th>Kappa Subset ($\mu \pm \sigma$)</th>
<th>Lambda Subset ($\mu \pm \sigma$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>242 CST Models</td>
<td>PSH</td>
<td>120.89 ± 15.10</td>
<td>142.03 ± 19.09</td>
</tr>
<tr>
<td></td>
<td>PPC</td>
<td>0.21 ± 0.47</td>
<td>0.53 ± 0.56</td>
</tr>
<tr>
<td></td>
<td>PNC</td>
<td>0.38 ± 0.64</td>
<td>0.60 ± 0.77</td>
</tr>
<tr>
<td></td>
<td>SFvCSP</td>
<td>3.82 ± 7.38</td>
<td>1.67 ± 7.87</td>
</tr>
<tr>
<td>14,072 VdH Ig-seq Models</td>
<td>PSH</td>
<td>131.27 ± 21.41</td>
<td>141.68 ± 17.82</td>
</tr>
<tr>
<td></td>
<td>PPC</td>
<td>0.17 ± 0.40</td>
<td>0.52 ± 0.73</td>
</tr>
<tr>
<td></td>
<td>PNC</td>
<td>0.27 ± 0.48</td>
<td>0.74 ± 0.83</td>
</tr>
<tr>
<td></td>
<td>SFvCSP</td>
<td>4.56 ± 7.44</td>
<td>0.84 ± 6.48</td>
</tr>
<tr>
<td>19,019 UCB Ig-seq Models</td>
<td>PSH</td>
<td>125.40 ± 18.56</td>
<td>139.66 ± 17.88</td>
</tr>
<tr>
<td></td>
<td>PPC</td>
<td>0.11 ± 0.31</td>
<td>0.31 ± 0.53</td>
</tr>
<tr>
<td></td>
<td>PNC</td>
<td>0.22 ± 0.40</td>
<td>0.65 ± 0.88</td>
</tr>
<tr>
<td></td>
<td>SFvCSP</td>
<td>3.67 ± 5.30</td>
<td>0.12 ± 5.24</td>
</tr>
</tbody>
</table>

• Consistent with DeKosky et al. (Lambda L3’s much more hydrophobic than Kappa L3’s)

Splitting Therapeutics by Species Origin

Table S8. 242 CST TAP values split by species origin.

<table>
<thead>
<tr>
<th>TAP Metric</th>
<th>101 Human ($\mu \pm \sigma$)</th>
<th>108 Humanized ($\mu \pm \sigma$)</th>
<th>30 Chimeric ($\mu \pm \sigma$)</th>
<th>3 Mouse ($\mu \pm \sigma$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CDR Length</td>
<td>48.68 ± 4.09</td>
<td>47.80 ± 3.42</td>
<td>46.77 ± 3.55</td>
<td>46.33 ± 1.25</td>
</tr>
<tr>
<td>PSH</td>
<td>127.76 ± 18.56</td>
<td>120.90 ± 14.20</td>
<td>115.73 ± 15.58</td>
<td>117.26 ± 9.44</td>
</tr>
<tr>
<td>PPC</td>
<td>0.29 ± 0.58</td>
<td>0.20 ± 0.36</td>
<td>0.26 ± 0.55</td>
<td>0.05 ± 0.06</td>
</tr>
<tr>
<td>PNC</td>
<td>0.34 ± 0.56</td>
<td>0.50 ± 0.75</td>
<td>0.30 ± 0.63</td>
<td>0.50 ± 0.50</td>
</tr>
<tr>
<td>SFvCSP</td>
<td>4.06 ± 7.44</td>
<td>3.13 ± 7.80</td>
<td>3.29 ± 5.99</td>
<td>7.58 ± 6.75</td>
</tr>
</tbody>
</table>

- Appears that the more human mAbs have larger patches of hydrophobicity than mouse mAbs.
- We also split by clinical progression (P2, P3, Approved) and drug campaign status (active/discontinued) but found no significant differences in TAP metric values.