Regulation of cell and gene therapies in Australia

Andrew Hislop
Senior Evaluator, Biological Science Section, TGA
Cell & Gene Therapy Products (CGTP): Manufacturing, Quality and Regulatory Considerations

9th July 2021
Role of the TGA

• Australian Commonwealth Government
• Department of Health
• The TGA regulates:
 ➢ medicines
 ➢ medical devices
 ➢ vaccines, blood products
 ➢ biologicals

Regulation of cell and gene therapies in Australia
Regulation of gene versus cell therapies

- Gene and cell therapies are regulated under different legislation in Australia.
- Biological medicines versus biologicals.
Regulation of gene versus cell therapies

• Biological medicine
 – a medicine (other than an antibiotic) that is:
 ▪ a vaccine, a peptide, a protein or polysaccharide-based; and
 ▪ human, animal or other organism derived, or produced through recombinant technology/biotechnology;
 ▪ certain human blood products
 – e.g. vector based gene therapies, monoclonal antibodies

• Regulated as a prescription medicine
 – Submission of dossier using ICH Common Technical Dossier Format module 3 (quality/CMC)
 – Application of Pharmacopoeia (Ph Eur) standards, ICH, EMA guidelines
 and Australian-specific legislation including Therapeutic Goods Orders (TGOs)
Regulation of gene versus cell therapies

- **Biological**
 - Something that comprises, contains or is derived from human cells or human tissues
 - *e.g. cellular therapies, CAR-T cells*

- Governed using the regulatory framework for biologicals 2011
 - Biologicals separated into classes based on risk from low risk class 1 to high risk class 4
 - Dossier submitted based on ICH CTD or TGA biologicals dossier
 - Application of ICH and EMA guidance
 - Use of Australian Therapeutic Goods Orders
Regulation of gene versus cell therapies

• TGA dossier
 – 1 INTRODUCTION
 – 2 SCOPE
 – 3 RISK MANAGEMENT
 – 4 QUALITY AND MANUFACTURING ASPECTS
 – 4.1 Biological starting materials
 – 4.2 Manufacturing process
 – 4.3 Characterisation
 – 4.4 Control of final product
 – 4.5 Storage and stability
 – 4.6 Product development
 – 4.7 Labelling and release documentation
 – 4.8 Transportation
 – 5 INTENDED USE – Class 2 only
 – 5 NON-CLINICAL DEVELOPMENT - Class 3 & 4 only
 – 6 CLINICAL DEVELOPMENT - Class 3 & 4 only
Pathways for submission

- Standard pathway for medicines and biological allows 255 days from acceptance of evaluation to decision

- For medicines where there is a high unmet clinical need other pathways are available
 - Provisional
 - Registered on basis of preliminary clinical data where benefit outweighs risk
 - Requires further submission of clinical data for full registration
 - Priority
 - Target timeframe of 150 days
Quality review of active ingredient

- For a typical biological medicine we would expect evidence of:
 - Consistent manufacture
 - Thorough characterisation
 - Stability studies performed
Regulation of gene versus cell therapies

- Gene and cell therapies are regulated under different legislation in Australia
- Biological medicines versus biologicals
Quality review of viral vector production

Manufacturing
- Establishment of a cell bank
- Establishment of a plasmid bank

Amplification
- Transfection of cells
- Vector characterisation
- Vector release testing

Release

Regulation of cell and gene therapies in Australia
Quality review of viral vector production

- For a viral gene therapy we would expect evidence of:
 - Most parameters met with therapies examined so far

- Issues with some analytical methods
 - e.g. Lack of a meaningful potency assay
 - Ultimately considered acceptable based on risk analysis and balance of other analytical data

- Interest in manufacturing process evolution
 - Looking for comparability between early and late batches
 - Especially in regard to those used for clinical trials
Quality review of cell therapy production

Regulation of cell and gene therapies in Australia
Quality review of cell therapy production

- Cell therapies have many more steps which are difficult to control
- CAR-T cells as an example
 - Starting materials inherently different
 - Batch analysis difficult
 - Lack of appropriate reference material
 - After transduction multiple active ingredients
 - Limited material to establish test methods
 - Appropriate potency assay
Reducing regulatory burden

• Autologous cellular therapies have a reduced risk of infectious disease transmission compared to others

• Current Australian legislation for donor selection mandates testing, medical history and deferral requirements

• We are proposing to exempt these requirements in certain autologous settings
 – Criteria which compromise quality, safety and efficacy must be considered
 – GMP required for appropriate manufacturing to prevent potential contamination