THE EUROPEAN DIRECTORATE FOR THE QUALITY OF MEDITICINES & HEALTHCARE (EDQM)
Development of New Ph. Eur. “Horizontal Standards” for Monoclonal Antibody Analysis: An Overview from the EDQM

AT Europe 2022
23-25 May 2022

Dr Mihaela Buda
EDQM, Council of Europe
Ph. Eur. standards for monoclonal antibodies: development approaches

“Horizontal standards”:
- **TNF-alpha product class case study**: bioassay collaborative study and NEW draft general chapter 2.7.26.
- TNF-alpha bioassay package

New general texts: recent developments

Concluding remarks
Ph. Eur. Approach to Public Standard-Setting

Monographs

- Ustekinumab (3165)*
- Adalimumab (3147)*
- Golimumab concentrated solution (3103)*
- Infliximab concentrated solution (2928)

Horizontal standards (general chapters)

- Cell-based assays for potency determination of TNF-alpha antagonists (2.7.26)**
- Size-exclusion chromatography for recombinant therapeutic monoclonal antibodies (2.5.43)*
- Capillary isoelectric focusing for recombinant therapeutic monoclonal antibodies (2.5.44)*

Definition
- Production
- Identification
- Tests
- Assay/Content
- Assay/Potency

Maximum versatility
Applicability to any mAb

*under elaboration
** to be published in Ph. Eur. Supplement 11.1 (Oct. 2022)
Ph. Eur. Standards for mAbs: Development Approaches

- **Expand** the portfolio of quality standards for mAbs:
 - Target **product classes** and specific drug substance; evaluate new opportunities on a case-by-case basis with support from key stakeholders
 - Develop **general methods of analysis** to support analytical testing → broad applicability, performance characteristics; multi-laboratory collaborative studies

- **Explore** **flexible concepts** and **new types of standardisation**:
 - Focus on key quality attributes and associated testing strategies
 - Establish suitable common expectations and general methodologies with broad applicability
Standardisation of TNF-alpha Bioassays

- **Rapidly growing number** of TNF-alpha antagonists on the market
- **Increased variety of approaches** to bioassay selection for assessing and comparing potencies
- Questions raised concerning the **appropriate choice of potency assays** for particular products and how they should be designed, conducted, analysed and applied

Elaboration of a **new general chapter** to provide **suitable common expectations** and **general methodologies** for potency determination, **widely applicable** to the class of TNF-alpha antagonists (Bioassay "Horizontal" Standard)
AIM:

- to investigate suitability of selected bioassays to be applied as multi-product procedures, suitable to assess the TNF-alpha inhibitory effect
- using a number of TNF-alpha antagonist substances (different sources/manufacturers) as test samples, as well as corresponding reference standards:
 - to assess the **suitability** of candidate procedures for the aforementioned substances
 - to **evaluate and compare assay performance**
 - to **compare the relative potency results obtained with the different assays** for each of the TNF-alpha antagonist substances.
TNF-alpha Bioassay Collaborative Study: Design

<table>
<thead>
<tr>
<th>Cell-based assay</th>
<th>Target cell line</th>
<th>Type of assay</th>
<th>Type of readout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure A</td>
<td>U937</td>
<td>Apoptosis</td>
<td>Luminescence</td>
</tr>
<tr>
<td>Procedure B</td>
<td>WEHI-164</td>
<td>Cytotoxicity</td>
<td>Absorbance</td>
</tr>
<tr>
<td>Procedure C</td>
<td>HEKBlue CD40L</td>
<td>Reporter gene</td>
<td>Absorbance</td>
</tr>
<tr>
<td>Procedure D</td>
<td>L929</td>
<td>Cytotoxicity</td>
<td>Absorbance</td>
</tr>
</tbody>
</table>

Procedures A, B, C and D initially validated for specific TNF-alpha antagonist substance:
- Procedure A – etanercept [monograph]
- Procedure B – infliximab [monograph]
- Procedure C – certolizumab pegol
- Procedure D – adalimumab

Common sample panel:
- 7 different preparations (test samples) and 2 in-house reference standards
- Ph. Eur. Etanercept BRP batch 1 (10 000 IU/ampoule)
- Ph. Eur. Infliximab BRP batch 1 (500 IU/ampoule)
- non-TNF-alpha control antibody

EDQM statistical analysis: 4-parameter logistic model; validity based on slope-ratio (parallelism)
TNF-alpha Bioassay Collaborative Study: Results

<table>
<thead>
<tr>
<th>APPC / SST</th>
<th>WEHI-164 cytotoxicity assay</th>
<th>U937 apoptosis assay</th>
<th>NF-κb-inducible reporter gene assay</th>
<th>L929 cytotoxicity assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity</td>
<td>no detectable activity of non-TNF-α antibody</td>
</tr>
<tr>
<td>Controls</td>
<td>cells only/cells +TNF-α > 3 (n = 96)</td>
<td>cells +TNF-α/cells only > 2.5 (n = 96)</td>
<td>cells +TNF-α/cells only > 3 (n = 96)</td>
<td>cells +TNF-α/cells only > 2 (n = 96)</td>
</tr>
<tr>
<td>Correlation</td>
<td>(r \geq 98.5%) in 90% of plates</td>
<td>(r \geq 97.5%) in 90% of plates</td>
<td>(r \geq 99.5%) in 90% of plates</td>
<td>(r \geq 99.5%) in 90% of plates</td>
</tr>
<tr>
<td>Mean bias (%)(^1)</td>
<td>(\leq 2.5) (\leq 2.5) (\leq 2.5)</td>
<td>(\leq 2.5) (\leq 2.5) (\leq 2.5)</td>
<td>(\leq 2.5) (\leq 2.5) (\leq 2.5)</td>
<td>n.a. n.a. n.a.</td>
</tr>
<tr>
<td>Repeatability (%)(^2)</td>
<td>(\leq 10) (\leq 10) (\leq 10)</td>
<td>(\leq 10) (\leq 10) (\leq 15)</td>
<td>(\leq 10) (\leq 10) (\leq 15)</td>
<td>(\leq 15) (\leq 15) (\leq 10)</td>
</tr>
<tr>
<td>Intermediate precision (%)(^3)</td>
<td>(\leq 15) (\leq 10) (\leq 10)</td>
<td>(\leq 20) (\leq 0) (\leq 10)</td>
<td>(\leq 10) (\leq 10) (\leq 15)</td>
<td>(\leq 15) (\leq 15) (\leq 10)</td>
</tr>
<tr>
<td>Reproducibility (%)(^4)</td>
<td>(\leq 20) (\leq 20) (\leq 15)</td>
<td>n.a. (\leq 20) (\leq 15)</td>
<td>(\leq 20) (\leq 20) (\leq 15)</td>
<td>n.a. n.a. n.a.</td>
</tr>
</tbody>
</table>

ETN: Etanercept; IFX: Infliximab; ADA: Adalimumab; CERT: Certolizumab pegol.

\(^1\) Reference standard.

\(^2\) between plates within an assay; \(^3\) between different plates and assays within a lab; \(^4\) between different plates, assays and laboratories. GCV% are averaged over the results of all labs, assays & plates.
TNF-alpha Bioassay Collaborative Study: Conclusions

- **Proof of concept** demonstrated.

- **Same assay procedure works equally well for all TNF-alpha antagonists tested:**
 - concentration range may need to be modified for different substances;
 - curve fitting for all curves very good;
 - lower asymptote very stable; upper asymptote appears to vary between analysis in different days;
 - assay variability considered acceptable.

- Experimental data generated in the collaborative study **set the basis for defining:**
 - system suitability parameters and criteria included in the general chapter;
 - specific procedures to be described in the general chapter, including sufficiently prescriptive conditions to facilitate successful independent analysis;
 - a common set of analytical expectations and approaches.

- **Critical parameters** and possible sources of variation identified:
 - level of details/prescriptive conditions to be suitably reflected in the chapter.
NEW General Chapter 2.7.26: Outline (1/3)

Cell-based assays for potency determination of TNF-alpha antagonists (2.7.26)

- **INTRODUCTION AND SCOPE:** 4 procedures considered comparable, unless otherwise specified in an individual monograph
- **PRINCIPLE** [different assay models]
- **PROCEDURES (A, B, C, D)**
 - detailed description of assay conditions;
 - preparation test/reference solution; TNF-alpha working solutions;
 - cells preparation; plate preparation; addition of staining reagent.

- **DATA ANALYSIS:**
 - general guidance applicable to all assay procedures, with the recommendation to use the 4-PL statistical model (according to the described validated/verified assay procedures)
 - general requirement for acceptable similarity/parallelism for the dose-response curves, with reference to the general chapter 5.3 Statistical analysis
NEW General Chapter 2.7.26: Outline (2/3)

Cell-based assays for potency determination of TNF-alpha antagonists (2.7.26)

- **SYSTEM SUITABILITY**: reference standard dose-response curve:
 - sigmoid curve with well-defined upper and lower plateaus and linear part;
 - values of the upper and lower plateaus within pre-defined range established from the minimum and maximum values of the corresponding controls;
 - coefficient of determination calculated (R^2);
 - ratio ‘cell+ TNF-alpha control’ to ‘cells only’.

- **SAMPLE ACCEPTANCE CRITERIA**: test sample dose-response curve:
 - sigmoid curve with well-defined upper and lower plateaus and linear part;
 - coefficient of determination calculated (R^2);
 - sample and reference standard dose-response curves: similarity/parallelism (see general chapter 5.3. *Statistical analysis of results of biological assays and tests*).

- **RESULTS**
 - general guidance on how to estimate the relative potency, including condition for assay variability, applicable to all assay procedures.

= sets of universally applicable parameters/ criteria, confirmed by the experimental verification → apply to all 4 assay procedures described
NEW General Chapter 2.7.26: Outline (3/3)

Cell-based assays for potency determination of TNF-alpha antagonists (2.7.26)

- GENERAL RECOMMENDATIONS AND ADJUSTMENT OF ASSAY CONDITIONS
 - discusses aspects (common to all assay procedures covered by the chapter), contributing to the variability of the assay performance;
 - describes the extent to which the various assay conditions may be adjusted to satisfy the system suitability criteria without fundamentally modifying the procedures described:
 - determination of TNF-alpha working concentration;
 - internal controls;
 - determination of analyte working range and dilution series;
 - cell maintenance;
 - assay design/plate layout.
NEW TNF-alpha Bioassay General Chapter 2.7.26

Cell-based assays for potency determination of TNF-alpha antagonists

- NEW type of general chapter with experimentally verified specific procedures.
- Assays described (procedures A, B, C and D):
 - validated for potency determination of specific TNF-alpha antagonists;
 - suitability in terms of specificity and precision demonstrated for each TNF-alpha antagonist substance, during verification experiments;
 - procedure applied to substances outside the scope of the initial validation or not covered in an individual monograph for a TNF-alpha antagonist, require validation.
- The chapter does not exclude the use of other procedures that are acceptable to the competent authority.

<table>
<thead>
<tr>
<th>Anti-TNF-alpha antagonist</th>
<th>U937 apoptosis assay</th>
<th>WEHI-164 cytotoxicity assay</th>
<th>NF-κB-inducible rep. gene assay</th>
<th>L929 cytotoxicity assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etanercept*</td>
<td>⬤</td>
<td>⬦</td>
<td>⬦</td>
<td>⬦</td>
</tr>
<tr>
<td>Infliximab*</td>
<td>⬦</td>
<td>⬤</td>
<td>⬦</td>
<td>⬦</td>
</tr>
<tr>
<td>Certolizumab pegol</td>
<td>⬦</td>
<td>⬦</td>
<td>⬤</td>
<td>⬦</td>
</tr>
<tr>
<td>Adalimumab**</td>
<td>⬤</td>
<td>⬦</td>
<td>⬦</td>
<td>⬤</td>
</tr>
<tr>
<td>Golimumab**</td>
<td>⬤</td>
<td>⬦</td>
<td>⬤</td>
<td>⬤</td>
</tr>
</tbody>
</table>

- ⬤ signifies that procedure has been validated
- ⬦ signifies that suitability has been demonstrated during verification experiments
- ⬤ signifies that suitability has not been evaluated
- * Ph. Eur. monograph
- ** monograph under elaboration
Cell-based assays for potency determination of TNF-alpha antagonists (2.7.26)

- Etanercept
- Infliximab
- Adalimumab [under elaboration]
- Certolizumab pegol
- Golimumab [under elaboration]

Section ASSAY/ POTENCY

Suitable TNF-alpha neutralisation assay – calibration with:

<table>
<thead>
<tr>
<th>Suitable</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etanercept BRP</td>
<td>Infliximab BRP</td>
</tr>
</tbody>
</table>

Example procedure

- U937 apoptosis assay (2.7.26, “Procedure A”)
- WEHI-164 cytotoxicity assay (2.7.26, “Procedure B”)

“In addition, the following procedures have been found suitable:”

- 2.7.26, B, C and D
- 2.7.26, A, C and D

“suitable”, “example” defined in Ph. Eur. General Notices
TNF-alpha Bioassay Package

- **New chapter 2.7.26:**
 - provides analytical tools and practical guidance to further build on and support testing.
 - helps establish an accepted and shared analytical language that will help standardise the potency determination of TNF-alpha antagonists, both currently available and in the pipeline.

- **Link created with monographs on TNF-alpha antagonists:**
 - diversifies the choice of suitable bioassays for potency determination
 - reinforces and maintains the flexibility already built into the monographs and the use of Ph. Eur. reference standards.

Ph. Eur. Supplement 11.1
- Publication: October 2022
- Implementation: April 2023
Horizonal Standard Development Beyond Product Class

2.5.44 Capillary isoelectric focusing for recombinant therapeutic monoclonal antibodies:

- (i)clEF procedures for analysis of charge heterogeneity of mAbs, to monitor identity, quality, production consistency
- based on data generated in multi-laboratory verification study
- guidance on the aspects to consider for product-specific application (validation)

2.5.43 Size exclusion chromatography for recombinant therapeutic monoclonal antibodies:

- widely used methodology for determination of size variants (monomer, HMWS); quantitation of LMWS can be highly variable depending on the mAb analysed
- SE-HPLC and SE-UPLC procedures, widely applicable to mAbs, given as examples
- suitability demonstrated by collaborative study

▶ well-defined analytical procedures and tools to control performance (including reference materials) and facilitate analytical assessment of key quality attributes of mAbs
New General Texts: Recent Developments

- Implementation of pharmacopoeial procedures (5.26)
 - guidance on setting up an approach for implementation of analytical procedures given in Ph. Eur. monographs;
 - approach described valid only when used in accordance with the principles laid down in the Ph. Eur. General Notices (including a suitable quality system);
 - “for information” chapter; other approaches may be appropriate.

11th Edition
- Publication: July 2022
- Implementation: January 2023
Implementation of Pharmacopoeial Procedures (5.26)

• Ph. Eur. General Notices:
 - the test methods given in monographs have been validated in accordance with accepted scientific practice and current recommendations on analytical validation [1.1.2.4 Validation and implementation of Ph. Eur. analytical procedures], unless otherwise indicated;
 - the user must assess whether and to what extent the suitability of the method under the actual conditions of use needs to be demonstrated according to relevant monographs, general chapters and quality systems

STEP 1: Implementation assessment

Critical factors?

NO

Procedure may be used in the implementing laboratory without any specific verification experiments.

YES

Procedure may be used in the implementing laboratory provided a set of verification experiments evaluating the impact of identified critical factors on selected APPCs is performed.

STEP 2: VERIFICATION = experiments to verify critical performance characteristics wrt defined acceptance criteria

- composition of the article under test;
- complexity of the sample preparation;
- reagents required to run the procedure;
- laboratory equipment required to run the procedure;
- laboratory environment.
“Implementation”: Ongoing Activities

- Elaboration of **illustrative examples** on implementation of pharmacopoeial procedures

- Among the selected procedures under consideration:
 - Assay by LC (chemically-defined active substance)
 - Related substances test by LC (medicinal product)
 - **Potency determination by cell-based (monoclonal antibody)**
 - Microbial enumeration tests non-sterile products
 - Identity by IR (excipient)

 - Identification of any critical factors and impact on APPC affecting the performance of the procedure
 - Develop a **verification plan** (critical APPCs together with the corresponding acceptance criteria) to assess the procedure according to its intended purpose
New General Texts: Recent Developments

Ph. Eur. General Notices:

“The tests and assays described are the official analytical procedures upon which the standards of the Ph. Eur. are based. With the agreement of the competent authority, alternative analytical procedures may be used for control purposes, provided that they enable an unequivocal decision to be made as to whether compliance with the standards of the monographs would be achieved if the official procedures were used. In the event of doubt or dispute, the analytical procedures of the Ph. Eur. are alone authoritative.”

- Draft general text on Comparability testing of alternative procedures (5.27)
 - guidance on possible approaches to assessment of comparability of an alternative procedure that is used instead of a pharmacopoeial procedure
 - preliminary conditions to the comparability study: validation of alternative procedure, implementation of pharmacopoeial procedure
 - comparability study: design, acceptance criteria for comparability, approach for data evaluation (equivalence testing)
 - “for information” chapter; other approaches may be appropriate
Comparability of Alternative Procedures (5.27)

“Once adopted by the Ph. Eur. Commission, this new general text will represent a major addition to the Ph. Eur. as it provides more detailed information on one of the processes that offers users greater flexibility in their demonstration of compliance with the Ph. Eur. monographs. It is also expected to prove valuable both to users who choose to employ alternative analytical procedures and to assessors during evaluation”.

Ph. Eur. Standards for mAbs: Summary

Ph. Eur. Standards for Therapeutic Monoclonal Antibodies: Development Approaches

MONOGRAPHS*
- built-in flexibility
- examples of suitable procedures

PRODUCT CLASS - BASED STANDARDS
- product classes/sub-classes
- quality attributes
- TNF-alpha neutralisation

PERFORMANCE-BASED STANDARDS
- platform methodologies
- performance characteristics
- reference standards

PRODUCT KNOWLEDGE, CASE STUDIES, COLLABORATIVE TESTING

- Explore flexible concepts of standardisation in an increasingly evolving multi-product market
- Reflect key quality attributes and associated testing strategies
- Provide common expectations and general methodologies applicable to wide range/classes of mAbs
- Provide guidance on aspects to consider when an analytical procedure is suitable for its intended purpose
- Contribute to standardisation of therapeutic monoclonal antibodies through rationalisation of methodologies and common functionalities
Call for Experts 2022-2025

Why become a Ph. Eur. expert?

- Provide a **vital and invaluable contribution** to the elaboration and maintenance of Ph. Eur. texts **by taking part** in the work of the Ph. Eur.
- **Expand** your knowledge of the Ph. Eur. and the European regulatory system
- **Network** with peers and other professionals with various backgrounds and from all over Europe and beyond
- Help **shape** Ph. Eur. texts, internationally recognised quality standards for medicines
- **Share** information and experience

Nomination process **now open** to all experts!

- **Ph. Eur. member states:** via your respective National Pharmacopoeia Authorities.
- **Non Ph. Eur. member states:** via EDQM Helpdesk service.

Visit [EDQM website](https://www.edqm.eu): **Join the network!**
Join the Conference!

INTERNATIONAL CONFERENCE

Collaboration, Innovation & Scientific Excellence:
the European Pharmacopoeia
11th Edition

Meet the experts
Connect with colleagues
Discuss latest developments

Register now!

19-21 September 2022
Palais de la musique et des congrès
Strasbourg, France
Thank you for your attention

Stay connected with the EDQM

EDQM Newsletter: https://go.edqm.eu/ Newsletter
LinkedIn: https://www.linkedin.com/company/edqm/
Twitter: @edqm_news
Facebook: @EDQM_Council_of_Europe